Поступила в редакцию 08.12.2017 Принята к публикации 13.03.2018

О НАЛИЧИИ СИСТЕМАТИЧЕСКОЙ ОШИБКИ В ДАННЫХ SDO/HMI

THE PRESENCE OF A SYSTEMATIC ERROR IN SDO/HMI DATA

Г.В. Руденко

Институт солнечно-земной физики СО РАН, Иркутск, Россия, rud@iszf.irk.ru

И.С. Дмитриенко

Институт солнечно-земной физики СО РАН, Иркутск, Россия, dmitrien@iszf.irk.ru

G.V. Rudenko

Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia, rud@iszf.irk.ru

I.S. Dmitrienko

Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia, dmitrien@iszf.irk.ru

Аннотация. Показано наличие систематической ошибки в векторных магнитных данных SDO/HMI (гелиосейсмический и магнитный имиджер на борту Обсерватории солнечной динамики (Solar Dynamical Observatory, SDO)), обнаруживающей себя в отклонении от радиального направления узелковых магнитных полей, проявляющихся на магнитограммах в виде мелких зерен сильного магнитного поля. Величина этого отклонения характеризуется зависимостью от расстояния до центра диска, что не может быть свойством магнитного поля, а привнесено в данные искусственно. Предлагается простой способ коррекции векторных магнитограмм, устраняющий обнаруженную систематическую ошибку.

Ключевые слова: Солнце, магнитное поле, векторные магнитограммы.

введение

Векторные магнитные данные, получаемые космическим аппаратом SDO/HMI, представляют собой значительный прорыв в солнечной магнитографии. Пространственное разрешение, качество векторных магнитограмм полного диска, регулярность и высокая скважность наблюдений не имеют аналога ни в наземных, ни во внеатмосферных измерениях. Неоценим и тот вклад, который может дать в ближайшем будущем постоянно пополняющийся временной ряд непрерывных наблюдений для прогнозирования космической погоды и фундаментальных исследований магнитной природы активности Солнца. Мы можем ожидать существенное улучшение достоверности прогноза параметров солнечного ветра и межпланетного магнитного поля (ММП), в частности, его полярности в околоземном космическом пространстве благодаря возможности использования новых векторных синоптических карт [Gusain at al., 2013].

Ранее для этих целей использовались синоптические карты только продольного поля. Преимущество использования новых векторных синоптических карт обусловлено двумя моментами. Во-первых, используя векторные измерения, мы получаем возможность экстраполяции поля по радиальной компоненте граничного поля (задача Неймана). С физической точки зрения такая постановка задачи экс**Abstract.** In this paper, we came to the conclusion that there is a systematic error in SDO/HMI (Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory) vector magnetic data, which reveals itself in a deviation from the radial direction of the knot magnetic fields manifesting themselves on magnetograms in the form of small grains in a strong magnetic field. This deviation demonstrates a dependence on the distance to the disk center, which cannot be a property of the magnetic field – it can only be artificially introduced into the data. We suggest a simple method for correcting vector magnetograms, which eliminates the detected systematic error.

Keywords: Sun, magnetic field, vector magnetograms.

траполяции более оправдана по сравнению с постановкой задачи экстраполяции по продольной компоненте, поскольку реальные измерения проводятся на уровне, где еще заведомо не выполняются не только потенциальное, но и общее бессиловое приближение. В этих условиях разные краевые задачи неизбежно должны приводить к различным результатам экстраполяции, которые, в частности, будут давать и различные значения компоненты радиального поля на границе. Во-вторых, мы строим синоптическую карту B_r как скалярной величины в отличие от карт продольной магнитной компоненты B_{los} . Это является важным моментом, поскольку построение синоптического распределения для нескалярной величины не вполне корректно.

Для любого большого проекта, запускающего в широкое пользование поток новой физической информации, является важным удаление любых значимых ошибок искусственного или естественного происхождения, если таковые присутствуют и могут быть выявлены, или до начала использования этой информации, или на его начальной стадии. Именно такого рода проблеме для новых данных SDO/HMI и посвящена наша работа. В ней мы устанавливаем факт наличия существенной систематической ошибки в предоставляемых данных. Эта ошибка явно выявляется нами из анализа данных измерений узелковых магнитных полей, концентрирующихся в узлах сетки конвективных ячеек спокойного Солнца. Узелки проявляются на магнитограммах в виде мелких зерен сильного магнитного поля и являются результатом сгребания магнитных трубок горизонтальными движениями окружающей плазмы, приводящего к концентрации магнитного потока и последующей радиализации поля. Свойство компактности узелковых полей и значительное превышение фоновых значений (>500 Гс) дают возможность их выделения с помощью достаточно простого алгоритма. Присущее узелковым полям свойство радиальности используется в качестве основного критерия тестирования данных измерений магнитного поля. В разделе 1 показано, что любая векторная магнитограмма SDO/HMI обнаруживает одинаковое систематическое отклонение (до 20°) узелкового поля от радиального направления в сторону лимба, зависящее от расстояния до центра диска. Поскольку результат наблюдения не должен зависеть от положения наблюдателя, делаем вывод, что выявленная зависимость может иметь только искусственную причину, возможно, не устранимую в современных технологиях получения и обработки параметров Стокса, используемых для получения конечных значений векторного магнитного поля. В разделе 2 мы предлагаем идею коррекции исходных векторных магнитограмм, основанную на предположении, что систематическое отклонение на самом деле не зависит от места измерения на диске и является следствием ошибки измерения угла наклонения поля относительно луча зрения. Проявления этой ошибки в узелковых полях приводят к ее видимой зависимости от расположения на диске. Мы показываем, что наша коррекция почти убирает эффекты неестественного поведения узелковых полей.

1. ВЫДЕЛЕНИЕ И АНАЛИЗ УЗЕЛКОВЫХ ПОЛЕЙ

1.1. Селекция и геометрическая интерпретация узелковых магнитных полей

Наш анализ опирается на естественное предположение о радиальности изолированных мелкомасштабных структур с сильным магнитным полем. В большинстве своем такие структуры отвечают узелковым магнитным полям, концентрирующимся в узлах сетки конвективных ячеек спокойного Солнца. Нахождение по магнитограммам интересующих нас структур и их физических характеристик может быть описано следующим алгоритмом выбора (AB):

• с помощью IDL-процедуры LABEL_REGION определяется полный набор изолированных областей со значениями |**B**| > 300 Гс;

• из полученного набора оставляются только области A_n с количеством пикселей не более 35 и $\max |\mathbf{B}(A_n)| > 500 \ \Gamma c$;

• для каждой A_n находится пиксель (i_{\max}^n, i_{\max}^n) : $|\mathbf{B}(i_{\max}^n, i_{\max}^n)| = \max |\mathbf{B}(A_n)|$;

• каждой A_n ставим в соответствие величины магнитного поля $\mathbf{B}^n = \mathbf{B}(i_{\max}^n, i_{\max}^n)$ и позиционный радиус-вектор $\mathbf{r}^n = \mathbf{r}(i_{\max}^n, i_{\max}^n)$.

Величины \mathbf{B}^n и \mathbf{r}_n используются для дальнейшего анализа. Далее для простоты мы будем опускать индекс *n*.

На рис. 1 показан типичный пример определения положений центров узелковых областей (красные крестики). Выделенные узелковые области достаточно равномерно распределены по всей области спокойного Солнца с большей концентрацией вблизи активных областей (зеленые области).

Для оценки степени радиальности узелковых областей будем использовать три узелковых параметра | B_r^{los} |

$$\frac{\frac{B_{r}}{|\mathbf{B}|}}{\frac{B_{r}^{los}}{|\mathbf{B}|}} = \frac{B_{los}}{\cos\mu} / |\mathbf{B}|, \qquad (1)$$

где $B_{los}=B_z$ — проекция вектора **В** вдоль луча зрения; µ — угол между лучом зрения и радиусвектором положения точки на лиске $(|B_r^{los}| = |B_r| = |\mathbf{B}|$ в случае, если поле строго радиально); а — угол между радиус-вектором точки наблюдения и составляющей магнитного поля в меридиональной плоскости, задаваемой радиусвектором точки наблюдения и осью Z луча зрения $(\alpha > 0$ в направлении к лимбу; $\alpha = 0$ в случае, если поле строго радиально); β — угол между вектором линии поля (всегда полагаем, что он направлен от Солнца) и меридиональной плоскостью (β=0 в случае, если поле строго радиально). Геометрия углов α и β показана на рис. 2.

Важно отметить, что для получения величины $|B_r^{\text{los}}|/|\mathbf{B}|$ не требуется информация о направлении азимутального поля. Только для вывода угловых узелковых параметров α и β необходима процедура устранения π -неопределенности азимута Φ (неустранимой в измерениях π -неопределенности поперечного поля). В данной работе для устранения π -неопределенности мы использовали метод, изложенный в работе [Rudenko, Anfinogentov, 2014].

1.2. Распределение узелковых характеристик НМІ по диску

Мы исследовали узелковые параметры, характеризующие отклонение от радиальности узелковых полей для достаточно большого набора 30 произвольно выбранных по времени SDO/HMI-магнитограмм за 2012–2014 гг. На всех магнитограммах

параметры $\frac{\left|B_{r}^{\text{los}}\right|}{\left|\mathbf{B}\right|}$, α и β показали фактически иден-

тичное поведение на солнечном диске (см. рис. 1).

Из рис. 3 следует, что только параметр β демонстрирует ожидаемое (в случае отсутствия артефактов в данных) статистическое поведение со средним нулевым значением. Остальные параметры $\frac{|B_r^{los}|}{|\mathbf{p}|}$,

Рис. 1. SDO/HMI 2012-01-15 05:12:00 UT. Типичное распределение магнитных узелков по солнечному диску: **|B**| > 300 Гс — зеленые области, узелки — красные крестики

Рис. 2. Угловые характеристики отклонения от радиальности вектора магнитного поля

α демонстрируют четкую зависимость их средних величин от величины удаления от центра солнечного

диска. С одной стороны, ненулевые
$$\frac{|B_r^{\text{los}}|}{|\mathbf{B}|}$$
, а проти-

воречат гипотезе радиальности узелковых полей. С другой стороны, их зависимость от расстояния до центра диска указывает на наличие ошибки искусственного происхождения. Действительно, если даже исключить свойство радиальности в выбираемых магнитных элементах, в этом случае должна была бы отсутствовать в принципе какая-либо статистическая связь узелковых параметров с расстоянием до центра солнечного диска. Одни и те же магнитные элементы не могут давать разные значения поля в зависимости от их видимого расположения на солнечном диске. Ясно также, что обнаруживаемая нами ошибка не может быть следствием последующей обработки исходных магнитограмм, связанной с методом разрешения проблемы π -неопределенности поперечной магнитной компоненты измерений. При наличии ошибки, порожденной только методом раз-

решения проблемы π -неопределенности, мы не наблюдали бы какой-либо статистической связи с рас-

стоянием величины $\frac{|B_r^{\text{los}}|}{|\mathbf{B}|}$, которая не зависит от

способа решения π -проблемы. Заметим, что максимальное отклонение угла α порядка 20° на средних

расстояниях и уменьшение отношения $\frac{|B_r^{Nos}|}{|\mathbf{B}|}$

в два раза вблизи лимба указывают на существенную ошибку искусственного происхождения.

Отметим видимую простоту связи величины $|B_r^{los}|$

 $\frac{|\mathbf{B}_{r}|}{|\mathbf{B}|}$ с расстоянием; эта связь на рис. 3, *а* зрительно

воспринимается как близкая к линейной. Запишем ее в виде

$$\frac{\left|B_{\rm r}^{\rm los}\right|}{\left|\mathbf{B}\right|} = 1 - kr_{\perp},\tag{2}$$

где r_{\perp} — расстояние от центра диска в солнечных радиусах. Нами на полном наборе магнитограмм было получено фитинг-значение линейного коэф-фициента формулы (2), равное

$$k = k_{\text{fit}} = 0.565.$$
 (3)

Соответствующая зависимость изображена на рис. 3, *а* штриховой линией (сплошная линия на рис. 3, *а* и линии на рис. 3, *б* будут прокомментированы позже).

Заметим, что полученные результаты, показанные на рис. 3, а также (2) с коэффициентом (3) хорошо объясняют рис. 4, б из работы [Leka et al. 2017], который отражает зависимость $|B_r^{los}|$ от магнитуды $|B_r|$ в полярной области. Статистическое распределение этих величин показывает четкое уменьшение первой величины относительно второй приблизительно в два раза (то же, что и в нашем случае для r_{\perp} ~1 (рис. 3, *a*))

Таким образом, наличие существенной систематической ошибки в данных HMI/SDO можно считать вполне установленным фактом.

2. КОРРЕКЦИЯ СИСТЕМАТИЧЕСКОЙ ОШИБКИ

Очень простая зависимость от расстояния r_{\perp} узелкового параметра $\frac{|B_{\rm r}^{\rm los}|}{|{\bf B}|}$ (рис. 3, *a*) дает повод

задуматься о возможности нахождения какого-либо способа коррекции, устраняющего, по крайней мере, формально, обнаруженные статистические эффекты. Изначально можно предположить два подхода к решению этой проблемы: геометрический — коррекция зависит от расположения на диске измеряемого элемента; локальный — коррекция зависит только от самих измеряемых величин и не зависит от расположения на диске измеряемого элемента. Первый подход оказался достаточно проблематичным. По крайней мере, нам не удалось найти какого-либо разумного способа его реализации. Предлагаемая нами коррекция, основанная на втором предположении, достаточно проста и дает предварительные результаты, вполне разумные с нашей точки зрения. Мы надеемся, что новые магнитограммы, не имеющие в отличие от оригинальных обнаруженных недостатков, могут быть более пригодны для дальнейшего практического использования как для получения глобальной модели короны [Riley et al., 2006, 2014], так и для нелинейного моделирования активных магнитных областей [Sun et al. 2012; Thalmann et al., 2012; Tadesse et al., 2013].

2.1. Метод

почти

Введем следующие обозначения: $|\mathbf{B}^*|$ — модуль истинного (искомого) магнитного поля; γ^* — наклонение истинного магнитного поля; Φ^* — азимут поперечного истинного магнитного поля; $B_{\text{los}}^* = |\mathbf{B}| \cos \gamma^*$ — продольная компонента истинного магнитного поля.

Соответствующие обозначения без звездочек будем относить к изначально измеренным величинам поля.

Будем полагать следующие тождества верными для измерений в каждой точке диска:

$$\Phi^* \equiv \Phi, \tag{4}$$

$$B_{\rm los}^* = \left| \mathbf{B}^* \right| \cos \gamma^* \equiv B_{\rm los} = \left| \mathbf{B} \right| \cos \gamma.$$
 (5)

Предположим, что истинное поле радиально. В этом случае в формуле (2) для узелков имеем

$$r_{\perp} = \sin \gamma^*,$$
 (6)

$$\cos\mu = \cos\gamma^*$$
. (7)

Используя (1), (6), (7), формулу (2) можно переписать в следующем виде:

$$\frac{\left|\boldsymbol{B}_{\mathrm{r}}^{\mathrm{los}}\right|}{\left|\mathbf{B}\right|} = \frac{\left|\mathbf{B}\right|\cos\gamma}{\cos\gamma^{*}\left|\mathbf{B}\right|} = \frac{\cos\gamma}{\cos\gamma^{*}} = 1 - k\sin\gamma^{*}.$$
(8)

Уравнение (8) дает однозначную связь между истинным и измеренным значениями наклонения. Значение γ^* может быть найдено с помощью алгоритма Ньютона. После нахождения γ^* из (5) и (7) определяем истинный модуль поля

$$\left|\mathbf{B}^*\right| = \left|\mathbf{B}\right| \frac{\cos \gamma}{\cos \gamma^*} = \left|\mathbf{B}\right| \left(1 - k \sin \gamma^*\right). \tag{9}$$

Формулы (4), (8), (9) позволяют однозначно определить новые значения модуля поля $|\mathbf{B}^*|$, наклонения γ^* , и азимута Φ^* через их исходные значения и величину *k*. Распространяя эти соотношения на все точки солнечного диска, мы получаем магнитограмму с новыми значениями наклонения и модуля поля с сохранением продольной компоненты поля и азимута поперечного поля. При этом среднее вели-

чины
$$\frac{\left|\boldsymbol{B}_{\mathrm{r}}^{*\mathrm{los}}\right|}{\left|\boldsymbol{B}^{*}\right|}$$
 в узелковых областях должно прини-

мать значение 1 всюду. Важно отметить, что коррекция, основанная на формулах (4), (8), (9), не зависит от

Рис 3. Зависимость параметров узелковых элементов от расстояния до центра солнечного диска: $a - |B_r^{los}| / |\mathbf{B}|$; $\delta - \alpha$, $s - \beta$ для полного набора магнитограмм (зеленые области) и для точек одной SDO/HMI 2012-01-15 05:12:00 UT магнитограммы (черные точки)

Рис. 4. Корректированная зависимость узелковых параметров от расстояния до центра солнечного диска (k=0.565): $a - \left|B_{\rm r}^{\rm los}\right| / \left|\mathbf{B}\right|$; $\delta - \alpha$, $\epsilon - \beta$ для полного набора магнитограмм (зеленые области) и для точек одной SDO/HMI 2012-01-15 05:12:00 UT магнитограммы (черные точки). АВ использует некорректированную магнитограмму

Рис. 5. Корректированная зависимость узелковых параметров от расстояния до центра солнечного диска (k=0.565): $a - \left|B_r^{los}\right| / \left|\mathbf{B}\right|$; $\delta - \alpha$, $s - \beta$ для полного набора магнитограмм (зеленые области) и для точек одной SDO/HMI 2012-01-15 05:12:00 UT магнитограммы (черные точки). АВ использует корректированную магнитограмму

процедуры устранения π-неопределенности азимута Ф поперечного поля и может быть выполнена до этой процедуры.

2.2. Распределение узелковых параметров для корректированной магнитограммы

Рассмотрим вначале представленный на рис. 4 результат действия коррекции с значением *k* из (3) для узелковых областей, предварительно выделенных на некорректированных магнитограммах. Как и $|B_r^{los}|$

ожидалось, зависимость узелкового параметра $\frac{|\mathbf{r}|}{|\mathbf{B}|}$

с расстоянием удаляется достаточно хорошо.

От расстояния до центра солнечного диска наблюдается зависимость только дисперсии этой величины. Кроме того, исчезает и зависимость от расстояния до центра солнечного диска второго узелкового параметра а. Действительно, согласно определению а, из (2) можно предсказать его поведение на диске (до коррекции), полагая β=0:

$$\alpha = \arccos\left(\left(1 - kr_{\perp}\right)\left(1 - r_{\perp}^{2}\right) - r_{\perp}\sqrt{1 - \left(1 - kr_{\perp}\right)^{2}\left(1 - r_{\perp}^{2}\right)}\right). (10)$$

Зависимость (10) изображена на рис. 3, δ штриховой линией для k=0.565. Ясно, что с исчезновением зависимости (2), среднее α должно быть нулевым всюду.

Пример, приведенный на рис. 4, не совсем корректен, несмотря на видимое улучшение узелковых характеристик. Для отбора узелковых областей в процедуре AB мы использовали некорректированные («неправильные») значения модуля поля, которое, как мы выяснили, существенно изменяется. Узелковые параметры, полученные из корректированной магнитограммы для k=0.565, дают результат с некоторой остаточной статистической зависимостью от расстояния вблизи лимба (рис. 5).

Данный результат вполне естественный, поскольку полученное подбором значение k определялось по набору «неправильных» магнитограмм. В результате подбора мы нашли как наиболее подходящее значение k=0.4 (сплошная линия на рис. 3, a). Как показывает рис. 6, коррекция с найденным значением k практически убирает зависимость узелковых параметров от расстояния до центра солнечного диска. Соответствующая этому значению k зависимость (10) показана сплошной линией на рис. 3, δ . Естественно, что последняя несколько смещена от средних значений узелкового параметра α .

Итак, мы имеем магнитограммы, узелковые поля которых отвечают естественному предположению радиальности. В любой точке магнитограммы изменения наклонения и модуля зависят только от локального значения γ согласно формулам (8), (9) для k=0.4. Эти изменения ощутимо меняют наклоны и величину магнитного поля (рис. 7).

Насколько правомерна такая корректировка для магнитных величин в активных областях, можно будет оценить в дальнейшем только по результатам прикладных решений физических задач, поскольку в общем случае мы не имеем каких-либо предположений об истинной ориентации магнитного поля.

Рис. 6. Корректированная зависимость узелковых параметров от расстояния до центра солнечного диска (k=0.5): $a - \left|B_r^{los}\right| / \left|\mathbf{B}\right|; \delta - \alpha, s - \beta$ для полного набора магнитограмм (зеленые области) и для точек одной SDO/HMI 2012-01-15 05:12:00 UT магнитограммы (черные точки). АВ использует корректированную магнитограмму

Рис. 7. Изменения наклонения (*a*) и модуля поля (б) после коррекции

ЗАКЛЮЧЕНИЕ

Мы показали, что векторные магнитные данные (SDO/HMI), предоставленные гелиосейсмическим и магнитным имиджером на борту SDO, содержат существенную систематическую ошибку. Это проявляется в том, что магнитное поле в мелкокомасштабных магнитных элементах с высокой напряженностью поля (магнитные узлы) отклоняется от радиального направления в сторону солнечного лимба. Величина этого отклонения зависит от расстояния до центра видимого солнечного диска и достигает максимума ${\sim}20^\circ$ на расстояниях около 0.4 R_\odot от центра диска.

Предложена коррекция, устраняющая выявленную систематическую ошибку. Данная коррекция является предварительной и требует дальнейшей апробации в конкретных прикладных задачах. Возможно, она может послужить нахождению причин систематической ошибки в данных и устранению этой ошибки на аппаратном уровне.

СПИСОК ЛИТЕРАТУРЫ

Gusain S., Pevtsov A.A., Rudenko G.V., Anfinogentov S.A. First synoptic maps of photospheric vector magnetic field from SOLIS/VSM: Non-radial magnetic fields and hemispheric pattern of helicity // Astrophys. J. 2013. V. 772, N 1. P. 52. DOI: 10.1088/0004-637X/772/1/52.

Leka K.D. Barnes G., Wagner E.L. Radial magnetic field component from line-of-sight magnetograms // Solar Phys. 2017. V. 292, iss. 2, article id. N 36. 26 pp. DOI: 10.1007/s11207-017-1057-8.

Riley P., Linker J.A., Miki'c Z., Lionello R., Ledvina S.A., Luhmann J.G. A Comparison between global solar magnetohydrodynamic and potential field source surface model results // Astrophys. J. 2006. V. 653. P. 1510. DOI: 10.1086/508565.

Riley P., Ben-Nun M., Linker J.A., Mikic Z., Svalgaard L., Harvey J., Bertello L., Hoeksema T., Liu Y., Ulrich R. A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms // Solar Phys. 2014. V. 289. P. 769. DOI: 10.1007/s11207-013-0353-1.

Rudenko G.V., Anfinogentov S.A. Very fast and accurate azimuth disambiguation of vector magnetograms // Solar Phys. 2014. V. 289. P. 1499–1516. DOI: 10.1007/s11207-013-0437-y.

Sun X., Hoeksema J.T., Liu Y., Wiegelmann T., Hayashi K., Chen Q., Thalmann J. Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation // Astrophys. J. 2012. V. 748. P. 77. DOI: 10.1088/0004-637X/748/2/77.

Tadesse T., Wiegelmann T., Inhester B., MacNeice P., Pevtsov A., Sun X. Full-disk nonlinear force-free field extrapolation of SDO/HMI and SOLIS/VSM magnetograms // Astron. Astrophys. 2013. V. 550. P. A14. DOI: 10.1051/0004-6361/201220044.

Thalmann J.K., Pietarila A., Sun X., Wiegelmann T. Nonlinear force-free field modeling of a solar active region using SDO/HMI and SOLIS/VSM data // Astrophys. J. 2012. V. 144. P. 33. DOI: 10.1088/0004-6256/144/2/33.

REFERENCES

Gusain S., Pevtsov A.A., Rudenko G.V., Anfinogentov S.A. First synoptic maps of photospheric vector magnetic field from SOLIS/VSM: Non-radial magnetic fields and hemispheric pattern of helicity. *Astrophys. J.* 2013, vol. 772, no. 1, pp. 52. DOI: 10.1088/0004-637X/772/1/52.

Leka K.D. Barnes G., Wagner E.L. Radial magnetic field component from line-of-sight magnetograms // *Solar Phys.* 2017, vol. 292, iss. 2, article id. no. 36, 26 pp. DOI: 10.1007/s11207-017-1057-8.

Riley P., Linker J.A., Miki'c Z., Lionello R., Ledvina S.A., Luhmann J.G. A Comparison between global solar magnetohydrodynamic and potential field source surface model results // *Astrophys. J.* 2006, vol. 653, pp. 1510. DOI: 10.1086/508565.

Riley P., Ben-Nun M., Linker J.A., Mikic Z., Svalgaard L., Harvey J., Bertello L., Hoeksema T., Liu Y., Ulrich R. A multi-observatory inter-comparison of line-of-sight synoptic solar magnetograms. *Solar Phys.* 2014, vol. 289, pp. 769. DOI: 10.1007/s11207-013-0353-1.

Rudenko G.V., Anfinogentov S.A. Very fast and accurate azimuth disambiguation of vector magnetograms. *Solar Phys.* 2014, vol. 289, pp. 1499–1516. DOI: 10.1007/s11207-013-0437-y.

Sun X., Hoeksema J.T., Liu Y., Wiegelmann T., Hayashi K., Chen Q., Thalmann J. Evolution of magnetic field and energy in a major eruptive active region based on SDO/HMI observation. *Astrophys. J.* 2012, vol. 748, pp. 77. DOI: 10.1088/0004-637X/748/2/77.

Tadesse T., Wiegelmann T., Inhester B., MacNeice P., Pevtsov A., Sun X. Full-disk nonlinear force-free field extrapolation of SDO/HMI and SOLIS/VSM magnetograms. *Astron. Astrophys.* 2013. vol. 550. pp. A14. DOI: 10.1051/0004-6361/201220044.

Thalmann J.K., Pietarila A., Sun X., Wiegelmann T. Nonlinear force-free field modeling of a solar active region using SDO/HMI and SOLIS/VSM data. *Astrophys. J.* 2012, vol. 144, pp. 33. DOI: 10.1088/0004-6256/144/2/33.

Как цитировать эту статью

Руденко Г.В., Дмитриенко И.С. О наличии систематической ошибки в данных SDO/HMI. Солнечно-земная физика. 2018. Т. 4, № 2. С. 3–10. DOI: 10.12737/szf-42201801.