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Abstract. We analyze the relations between various 

combinations of peak fluxes and fluences of solar mi-
crowave bursts at 35 GHz recorded with the Nobeyama 
Radio Polarimeters during 1990–2015, and correspond-
ing parameters of proton enhancements with E>100 
MeV exceeding 0.1 pfu registered by GOES monitors in 
near-Earth environment. The highest correlation has 
been found between the microwave and proton fluences. 
This fact reflects a dependence of the total number of 
protons on the total duration of the acceleration process. 
In the events with strong flares, the correlation coeffi-
cients of proton fluences with microwave and soft X-ray  
fluences are higher than those with speeds of coronal 

mass ejections. The results indicate a statistically larger 
contribution of flare processes to acceleration of high-
energy protons. Acceleration by shock waves seems to 
be less important at high energies in events associated 
with strong flares, although its contribution probably 
prevails in weaker events. The probability of a detecta-
ble proton enhancement was found to directly depend 
on the peak flux and duration of a microwave burst. 
This can be used for diagnostics of proton enhance-
ments based on microwave observations. 

 
Keywords: proton events, solar flares, radio radia-

tion.
 

 

INTRODUCTION 

The problems of the origin of solar proton events 
(SPEs) and their diagnostics have been actively dis-
cussed for almost half a century [Bazilevskaya, 2009; 
Miroshnichenko et al., 2013]. Space weather disturb-
ances caused by solar activity can pose a threat to vari-
ous branches of human activity and to human health. 
High-energy particle fluxes are dangerous for both 
spacecraft crews and equipment. The first mission, 
which arrived at the International Space Station on 2000 
November 2, was exposed to the most powerful SPE on 
November 8–10 (see, e.g., [Lario et al., 2009, Logachev 
et al., 2016]). Secondary particles produced by solar 
cosmic rays (SCR) in Earth’s atmosphere can also give 
noticeable radiation doses to crew members and passen-
gers of transcontinental flights passing high-latitude 
regions. The extreme solar activity outburst at the end of 
2003 October forced a change in the transcontinental 
routes during that period [Veselovsky et al., 2004].  

Particles can be accelerated by flare processes in an 
active region or by shock waves in a larger space 
[Cliver et al., 1989; Kallenrode, 2003; Aschwanden, 
2012; Reames, 2013; Desai, Giacalone, 2016]. These 
two possible acceleration sites are assumed to be remote 
and virtually independent of each other. The main ac-
celerator of protons, which reach the Earth orbit, is 
widely believed to be bow shocks driven by super-
Alfvénic coronal mass ejections (CME) in the high co-
rona [Reames, 2009, 2013; Gopalswamy et al., 2014]. 
This concept seems to be supported by results of the 
velocity dispersion analysis for solar particles with dif-

ferent energies. This analysis shows that the extrapolat-
ed time of particle escape near the Sun into the inter-
planetary space is delayed relative to a flare. This is 
considered as an argument for their acceleration by 
CME-driven bow shocks. Proceeding from the hypothe-
sis about the bow-shock excitation scenario, its propo-
nents compare SPE properties with observable manifes-
tations corresponding to those suggested by this hypoth-
esis. For example, the onset of a type II radio burst is 
considered to be an indicator of the shock formation 
corresponding to the transition of the CME leading edge 
to the super-Alfvénic regime. Basing on these assump-
tions, researchers are attempting to associate properties 
of the shock wave responsible for proton acceleration 
with the initial frequency of the type II radio burst. 

However, this correspondence is not expected ei-
ther for another (for example, impulsive-piston) 
shock-wave excitation mechanism or for the location 
of the type II burst source on a flank of the shock. 
We have established a closer (than previously 
thought) relation between evolution of eruptive flares 
and excitation of shock waves [Grechnev et al., 
2013a, 2015b]. Thus, the traditional contrast between 
shock-related and flare-related acceleration of parti-
cles may not be fully justified.  

Earlier studies point out that parameters of solar en-
ergetic particles correlate with those of microwave 
bursts [Croom, 1971, Akinyan et al., 1978]. Yet, Kahler 
[1982] attributes this correlation to the “Big Flare Syn-
drome”, i.e. a general correspondence between the ener-
gy release in an eruptive flare and its various manifesta-
tions regardless of any physical connection between 
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them. Subsequently, the exaggeration of the shock-
related acceleration led to underestimation of diagnostic 
capabilities of microwave bursts. Nevertheless, a num-
ber of studies conclude that flare processes play an es-
sential role in accelerating SCR and confirm that the 
diagnostics of SPEs from flare radio emission is promis-
ing [Daibog et al., 1987; Chertok, 1990; Melnikov et al., 
1991; Isaeva et al., 2010]. In this respect, the correlation 
might be important between the parameters of the fre-
quency spectrum of microwave bursts and the energy 
spectrum of near-Earth proton fluxes [Chertok et al., 
2009]. In [Grechnev et al., 2008; Klein et al., 2014], the 
authors argue that the flare-related acceleration domi-
nated in the 2005 January 20 extreme SPE. Grechnev et 
al. [2013b, 2015a] show that contrasting of sources of 
accelerated protons in different extreme events is not 
justified. A shock wave appearing during a flare can 
accelerate particles much earlier than the CME speed 
exceeds the Alfvén velocity. Flare-accelerated particles 
trapped in a CME flux rope can be released only after 
its reconnection with an open magnetic structure. 
Hence, the delayed escape of accelerated particles into 
the interplanetary space suggests their acceleration by 
the flare, rather than by the shock wave. This reverses 
the conclusion derived from the velocity dispersion 
analysis. Thus, recent results indicate that the analysis 
of the relationships between microwave bursts and pro-
ton enhancements is useful irrespective of SPE origin.  

We analyze relationships between flare and CME 
parameters and high-energy SPEs to determine the con-
tribution of the two possible sources of particle accel-
eration. The main goals are to find the highest correla-
tion between parameters of solar eruptive events and 
SPEs and to identify possible patterns for prompt diag-
nostics of SPE from microwave observations.  

Section 1 summarizes our previously obtained statis-
tical results (1.1), lists data sources, characterizes their 
selection and processing (1.2). Section 2 analyzes de-
pendences of SPE probability on the intensity of a mi-
crowave burst (2.1) and its duration (2.2), compares 
correlations between different combinations of peak 
microwave fluxes and fluences and those of proton en-
hancements (2.3). Section 3 examines the relationships 
between different parameters of solar eruptive activity 
and proton fluences. Section 4 discusses the results. 
 

1. PRELIMINARY RESULTS  
AND DATA PROCESSING 

1.1. Earlier results 

The gyrosynchrotron emission of accelerated elec-
trons observed as microwave bursts depends on their 
parameters and on the magnetic field in the source and 
its dimensions. These dependences differ significantly 
for the optically thick regime (below the frequency of 
the spectral peak of the gyrosynchrotron emission) and 
for the optically thin regime (at frequencies above the 
spectral peak). The microwave emission in the optically 
thin regime is the most sensitive to high-energy elec-
trons and is most directly related to the rate of energy 
release in the flare–CME process. The frequency of the 

spectral peak also depends on the above parameters. 
Therefore, microwave data at a fixed frequency are am-
biguous, referring to the region of the gyrosynchrotron 
emission spectrum to the left of the peak in some events 
and to the right of it in the others. To minimize this am-
biguity, it is reasonable to analyze microwave data at 
the highest possible frequency. The highest frequency at 
which stable long-term measurements of the total solar 
radio flux are made is 35 GHz. These observations have 
been carried out with Nobeyama Radio Polarimeters 
(NoRP) [Nakajima et al., 1985]) since 1990. 

Grechnev et al. [2013b] have analyzed the relationships 
between peak microwave fluxes  1000 sfu (1 sfu = 10–22 
W m–2 Hz–1) at 35 GHz (F35) and peak proton fluxes with 
energies above 100 MeV (J100) for 1990–2012. For the 
analysis to be complete, the authors identified and exam-
ined events for the same period, which caused SPEs 
J100>10 pfu (1 pfu = 1 cm–2s–1sr–1) associated with weaker 
microwave bursts. The full list comprises 98 events. For 
convenience, categories of the events were introduced by 
analogy with the GOES classification. These categories 
were determined from the peak microwave flux at 35 GHz: 
F35>104 sfu – mX (microwave-Extreme), 103 sfu < F35<104 
sfu – mS (microwave-Strong), F35<103 sfu – mM (micro-
wave-Moderate) and mO (microwave-Occulted) – for the 
events behind the solar limb whose emission is not observ-
able from Earth.  

Four groups of events have been identified: 
1) events with a trend between proton fluxes as mi-

crowave fluxes – the group to which most events be-
long; 

2) events with intense bursts at 35 GHz without pro-
ton enhancements, detectable in the GOES integral pro-
ton channel above 100 MeV; 

3) atypically abundant SPEs after moderate micro-
wave bursts (mM) – few events; 

4) SPEs associated with the occulted sources (mO) –
few events.  

A preliminary diagnostic criterion has been formulated: 
if an event occurs in the visible part of the western solar 
hemisphere and is accompanied by a significant micro-
wave burst, CME, and type II burst, one can expect an 
enhancement of near-Earth proton flux J100, expressed 
in pfu, ranging from (F35/1100)2 to (F35/13000)2, 
where F35 is expressed in sfu. If a microwave burst is 
very strong, then significant SPE can occur even when a 
solar source is located in the eastern hemisphere, espe-
cially if the burst has a long duration. It has been estab-
lished that high-energy SPEs feature flare ribbons above 
sunspot umbras. This is consistent with the presence of 
powerful microwave bursts in these events caused by 
the gyrosynchrotron emission in strong magnetic fields 
of numerous high-energy electrons [Grechnev et al., 
2008].  

Grechnev et al. [2015a] continued analyzing the se-
lected events. The list was expanded to 111 events. 
The authors studied relationships between various 
combinations of peak microwave fluxes and fluences 
(integrated over the time of emission fluxes) at 35 
GHz and proton enhancements with energies >100 
MeV. They used the detailed time histories and spectra 
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The reported results refer to the total proton fluences 
integrated over the entire time of the corresponding SPEs. 
On the other hand, similar studies often deal with proton 
fluences only during the rise phase of a proton event, in 
particular to extract its first “fast” component whose con-
nection with flare processes seems more obvious. For 
completeness, we have also analyzed the same statistical 
relationships for start-to-peak proton fluences. The corre-
lation coefficients with all the parameters considered 
turned out to be almost the same as those for total flu-
ences, with differences within 0.02. 

 
4. DISCUSSION AND CONCLUSIONS 

Our analysis has revealed relationships between the 
intensity and duration of microwave bursts recorded at 35 
GHz and the probability of SPEs with energies above 100 
MeV. The causes of these relationships are most likely 
associated with the effects of proton propagation from their 
solar sources to Earth, as well as with the limited 
sensitivity of detectors. This circumstance suggests the 
possibility that protons are accelerated to high energies in 
all flares accompanied by sufficiently strong bursts at 35 
GHz, i.e. whenever a great number of electrons are 
accelerated to relativistic energies. This confirms the 
conclusions drawn by Livshits and Belov [2004] about the 
simultaneous acceleration of electrons and protons. 

Our results agree with the main conclusion made by 
Trottet et al. [2015] and confirm their preliminary conclu-
sion that flare acceleration prevails in high-energy pro-
tons. For the vast majority of the analyzed events, we 
have found a direct dependence with a high correlation 
between flare parameters and fluences of protons with 
energies above 100 MeV. The comparable correlation of 
proton fluences with start-to-peak SXR fluences and mi-
crowave emission show that both these parameters char-
acterizing solar flares can be used for SPE diagnostics.  

Events with sufficiently powerful microwave bursts 
(F35>1000 sfu) exhibit a high correlation (about 0.9) 
between microwave and proton fluences, which holds 
over three orders of magnitude for microwaves and five 
orders of magnitude for proton events. This corresponds 
to the power law whose exponent can be roughly 
estimated as a logarithmic ratio of these ranges, i.e. 
5/31.7. The exponent obtained by linear regression on 
the log scale is 1.350.16. This allows one to estimate 
practically the expected SPE fluence from the observed 
microwave burst. 

With weaker bursts, the correlation is expected to 
decrease because only the eruption of a magnetoplasma 
structure with a strong acceleration is required for the 
appearance of a shock wave capable of accelerating 
protons. This can occur without pronounced flare pro-
cesses responsible for particle acceleration (see, for ex-
ample, [Grechnev et al., 2015a, b]); such events feature 
soft spectrum of SPEs [Chertok et al., 2009; Gopalswa-
my et al., 2015]. The correlation with proton fluences 
decreases in events with weaker microwave bursts, alt-
hough not as much as expected: one third of their total 
number in Figure 5, a is inside the correlation ellipse or 
at its boundary.  

Proton-abundant events deserve separate discussion 
(black diamonds in Figure 5). Differing in some charac-
teristics from other events, the 2000 November 8 event is 
so far from the correlation ellipse that in our analysis its 
atypical character can be attributed only to the shock-
related acceleration. The very short-duration impulsive 
event on 1997 November 4 does not fit into the hypothe-
sis of gradual events with supposedly predominant accel-
eration of protons by shock waves.  

The three remaining SPEs, two of which caused 
GLEs, feature moderate microwave bursts from 200 to 
800 sfu with a wide range of durations from 13 to 58 
min and spectral peak frequencies not exceeding 10 
GHz [Grechnev et al., 2013b]. The existence of events 
with atypically high proton yield and low frequency of 
spectral peak has been noticed previously [Melnikov et 
al., 1991; Daibog et al., 1993]. The detailed analysis of 
the 2001 December 26 flare has revealed a strong 
asymmetry in the magnetic configuration. For the mag-
netic flux to be balanced, the area of the microwave 
source in weak fields should be larger than that in strong 
fields with respect to the ratio of their strengths. This 
leads to an increase in the low-frequency part of the 
gyrosynchrotron emission spectrum and to a leftward 
shift of its peak. The strong dependence of the gyrosyn-
chrotron emission on the magnetic field strength in the 
region of its generation produces an additional several-
fold scatter of microwave burst parameters for the same 
acceleration efficiency [Grechnev et al., 2017]. In fact, 
these circumstances confirm the assumptions made in 
[Melnikov et al., 1991; Daibog et al., 1993] about the 
role of magnetic fields. These effects in the diagnostics 
can be partially compensated using the morphological 
indication of the intersection of flare ribbons with sun-
spot umbras. The most powerful microwave burst oc-
curs if the ribbons cross the umbrae of both sunspots 
with opposite polarity (as, for example, for GLE69 and 
GLE70). Bursts with smaller peak fluxes occur when 
one of the ribbons crosses a sunspot umbra, as was ob-
served in the events that caused GLE63 and GLE71. 
Moderate bursts occur in most events when the ribbons 
are outside sunspots. 

Another reason for the enhanced proton yield of 
these three events could be due to the fact that in each of 
them at least two eruptions occurred within a short time 
interval. If more than one eruption occurs in the event, 
the first eruption facilitates the lift-off of the subsequent 
CME, a higher speed, and excitation of a stronger shock 
wave. If two shock waves are excited by the eruptions, 
they merge into a single stronger shock wave. The first 
eruption releases suprathermal particles that can be ac-
celerated by a shock wave generated by the second 
eruption. On the other hand, the first eruption stretches 
closed coronal structures, thus greatly facilitating the re-
lease of protons and heavier ions accelerated by flare 
flare processes in the active region [Grechnev et al., 
2013a].  

A limitation of our analysis is that the 35 GHz emis-
sion in use, which adequately reflects the processes of 
powerful energy release and particle acceleration during 
the main phase of the flare, provides insufficient infor-
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mation about possible post-eruptive (post-impulsive) 
particle acceleration with much lower intensity but 
longer duration. As is known, the peak of the micro-
wave emission spectrum shifts with time to a low-
frequency region (which corresponds to the displace-
ment of the microwave source to the region of weak 
magnetic fields), therefore the prolonged post-eruptive 
phase appears only at lower frequencies [Chertok, 1995; 
Klein et al., 1999, 2014]. Hence, the correlation coeffi-
cients found for the 35 GHz frequency represent the 
lower boundary of possible values. The way to take into 
account possible post-eruptive processes is not yet ob-
vious. 
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