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Abstract. Fundamentals of the spherical harmonic 

analysis (SHA) of the geomagnetic field were created 

by Gauss. They acquired the classical Chapman-

Schmidt form in the first half of the XX
th

 century. The 

SHA method was actively developed for domestic geo-

magnetology by IZMIRAN, and then, since the start of 

the space age, by ISTP SB RAS, where SHA became 

the basis for a comprehensive method of MIT (magne-

togram inversion technique). SHA solves the inverse 

problem of potential theory and calculates sources of 

geomagnetic field variations (GFV) — internal and ex-

ternal electric currents. The SHA algorithm forms a 

system of linear equations (SLE), which consists of 3K 

equations (three components of the geomagnetic field, K 

is the number of ground magnetic stations). Small 

changes in the left and (or) right side of such SLE can 

lead to a significant change in unknown variables. As a 

result, two consecutive instants of time with almost 

identical GFV are approximated by significantly differ-

ent SHA coefficients. This contradicts both logic and 

real observations of the geomagnetic field. The inherent 

error of magnetometers, as well as the method for de-

termining GFV, also entails the instability of SLE solu-

tion. To solve such SLEs optimally, the method of max-

imum contribution (MMC) was developed at ISTP SB 

RAS half a century ago. This paper presents basics of 

the original method and proposes a number of its modi-

fications that increase the accuracy and (or) speed of 

solving the SLEs. The advantage of MMC over other 

popular methods is shown, especially for the Southern 

Hemisphere of Earth. 

Keywords: equivalent current function, magneto-

gram inversion technique, spherical harmonic analysis, 

system of linear equations. 

 

 

 

 

 

 

INTRODUCTION 

Spherical harmonic functions were first used for the 

analytical representation of the geomagnetic field al-

most two centuries ago [Gauss, 1839]. The Spherical 

Harmonic Analysis (SHA) created by Carl Gauss was 

developed in [Schuster, Lamb, 1889; Schmidt, 1935; 

Chapman, Bartels, 1940] and became the primary meth-

od for modeling the main magnetic field and for calcu-

lating internal and external sources (equivalent currents) 

of quiet geomagnetic variations (diurnal and seasonal) 

at middle and low latitudes within the two-dimensional 

ionospheric dynamo theory [Benkova, 1941; Fougere, 

1963; Mishin, 1976; Yanovsky, 1978; Haines, Torta, 

1994; Backus et al., 1996; Mandea, Korte, 2010; Olsen 

et al., 2010]. 

At ISTP SB RAS, the SHA method for the variable 

geomagnetic field in the dynamo region, in particular in 

the high-latitude region of the polar ionosphere, began 

to develop rapidly under the leadership of V.M. Mishin 

since the foundation of the Institute in 1960 [Mishin 

Bazarzhapov, 1966; Bazarzhapov et al., 1966, 1979; 

Shpynev et al., 1974; Mishin, 1976; Mishin et al., 1982, 

1984; Shirapov et al., 2000]. Currently, SHA remains 

the main block of the software package of the magneto-

gram inversion technique (MIT) [Bazarzhapov et al., 

1979; Mishin, 1990; Shirapov, Mishin, 2009] — an in-

novative method for calculating ionospheric sources 

(electric fields and currents) of ground geomagnetic 

variations from their measurements at the global net-

work of magnetic stations. 
The SHA method solves the inverse problem of the 

potential theory for the quasistationary harmonic geo-
magnetic field in the surface layer of the non-
conducting atmosphere [Chapman, Bartels, 1940; 
Yanovsky, 1978]. The Laplace equation for the scalar 
magnetic potential and for the geomagnetic field poten-
tiality yields a system of linear algebraic equations 
(SLAE), which in MIT [Bazarzhapov et al., 1979] takes 
the form  
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where X, Y, Z are components of geomagnetic variations 
in a dipole coordinate system, measured at magnetome-
ter stations; θ is the dipole colatitude; λ is the local ge-

omagnetic time; ;m m m
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 cosm

nP    are associated Legendre polynomials of 
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degree n and order m, specified in Schmidt normaliza-
tion, and their derivatives [Schmidt, 1935]. 

In (1), the number of columns is equal to the number 

of unknown variables and depends on N, and the num-

ber of rows is 3K, where K is the number of ground 

magnetometers. On the one hand, when selecting N, we 

should take into account K so that the number of un-

knowns does not exceed the number of equations. On 

the other hand, when using only part of the first col-

umns, we cut off the rest of the spectrum, which in gen-

eral could better approximate the original field specified 

at a nonuniform network. Thus, a problem arises about 

choosing a finite subset such that it can approximate 

GFV with acceptable accuracy from a number of spher-

ical functions — the problem of choosing the optimal 

spectrum of approximating functions. 

The SHA coefficients obtained for (1) are used to 

calculate external and internal current functions respon-

sible for GFV observed on Earth’s surface. The formula 

for calculating the external equivalent current function 

from the SHA coefficients J(θ, λ) has the form [Chap-

man, Bartels, 1940; Bazarzhapov et al., 1979; Haines, 

Torta, 1994] 
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where μ0 =4π·10
–7

 H/m is the magnetic constant; 

r =RE +h; RE =6371 km is the Earth radius; h =115 km is 

the reduced height of the ionospheric current-carrying 

layer.  

In the MIT software package, the spherical coeffi-

cients of (1) and external equivalent current function (2) 

form the basis of calculating spatial distributions of ma-

jor electrodynamic parameters of the polar ionosphere 

and magnetosphere in two hemispheres (boundaries of 

auroral ovals, integral conductivities, horizontal electric 

fields and currents, field-aligned currents, and other 

parameters) [Bazarzhapov et al., 1979; Mishin, 1990; 

Lunyushkin, Penskikh, 2019]. 

The number of rows of system (1) depends on the 

number of operating magnetometer stations; and the 

number of columns, on the spectrum of degree n and 

order m in use [Bazarzhapov et al., 1966; Mishin et al., 

1984]. Thus, the system can be both overdetermined and 

underdetermined. When m=0, zero columns appear, and 

for the Y component in (1) zero substrings appear as 

well. If the system is ill-conditioned, small changes in 

the X, Y, Z components lead to significant changes in 

desired coefficients [Tikhonov, Arsenin, 1979]. As a 

result, sources of geomagnetic field variations (GFV) 

for two consecutive moments of time with almost the 

same variations are approximated by significantly dif-

ferent coefficients. This contradicts both logic and actu-

al observations. The presence of the inevitable error of 

magnetometers that measure the geomagnetic field and 

the selection of a method for determining the GFV base-

line [Gjerloev, 2012] also cause instability in SLAE 

solution (1) [Mishin et al., 1982]. There are a number of 

methods for solving systems of linear equations 

[Faddeev, Faddeeva 1963]. Based on features of the 

global distribution of magnetic data in MIT, to solve 

SLAE a method of maximum contributions (MMC) has 

been developed which has demonstrated high reliability 

and efficiency [Shpynev et al., 1974; Bazarzhapov et 

al., 1979]. MMC relies on instantaneous data on GFV, 

specified at a non-uniformly distributed network of 

ground magnetometers. This complicates the solution of 

the inverse problem [Sneeuw, 1994], but provides 1-min 

instantaneous equivalent current functions without time 

averaging. Most other existing SHA methods unlike 

MMC require uniform distribution of raw data over a 

sphere [Barraclough, 1978].  

Ground magnetometers are generally located in the 

Northern Hemisphere, therefore for a few decades the 

MIT problem was successfully solved using MMC only 

for one hemisphere. Due to the project SuperMAG, the 

amount of available data from the world’s ground mag-

netometers, including the Southern Hemisphere, has 

increased [Gjerloev, 2012]. This made it possible to 

perform calculations not only for the Northern but also 

for the Southern Hemisphere, and was one of the rea-

sons for creating a new MIT software package.  

Purposes of this work are to describe the current 

state of MMC as one of the important elements of MIT, 

which has already provided first noncontroversial scien-

tific results for the two hemispheres of Earth at a time 

[Lunyushkin et al., 2019]; to compare MMC with two 

other popular methods utilized to solve systems of equa-

tions of similar geophysical problems. 

 

1. BASICS OF THE METHOD OF 

MAXIMUM CONTRIBUTIONS  

In the case of a uniform network of raw data, GFV is 

expanded by a system of orthogonal spherical functions, 

which can be considered as a system of orthogonal vec-

tors, i.e. orthogonal basis. In the case of a nonuniform 

network, the vector system is nonorthogonal. 

In the matrix form, SLAE is expressed through: 

Ax = b, (3) 

where A is the matrix of coefficients, b is the column 

vector of constant terms, x is the column vector of un-

known variables. In the general case, the matrix A may 

be non-square. 

Introduce the notations: C =cos(mλ), S =sin(mλ). For 

clarity, use a magnetometer station and fixate n and m, 

then SLAE (1) can be represented as (3), where 
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If the number of observation stations is equal to K, 
system (1) consists of 3K of such subsystems. With in-
creasing n and m, the number of columns of the matrix 
A and the number of rows of the matrix x increase. 
Thus, in the general case, system (1) may be underde-
termined and overdetermined. By performing successive 
iterations, MMC provides an approximate solution of 
such a system regardless of its dimension. 

Consider the MMC basics by the simplified example 
of SLAE with two equations and two unknowns 
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21 1 22 2 2

,

.
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
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 
  

The matrix can be regarded as a set of columns or a 

set of rows [Beklemishev, 1998]. If we separate the ma-

trix A into individual column vectors, SLAE can be 

represented as 

11 12 1

1 2

21 22 2

.
a a b

x x
a a b
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This system can be written as 

x1a1 + x2a2 = b,  (4) 

where a1 =(a11, a21), a2 =(a12, a22) are new base vectors 

in the two-dimensional space, x1, x2 are scalars at the 

base vectors, b=(b1, b2) is the vector-result that is ob-

tained by summing up the two base vectors multiplied 

by respective scalars. The vectors b, a1, a2 are specified 

in an orthonormal basis e1, e2. 

Thus, the SLAE solution is equivalent to decomposi-

tion of the given vector b in the given basis a1, a2, i.e. to the 

search for a vector x such that its components are coordi-

nates of the vector b in the basis a1, a2. 

Equation (4) can be written as 

x1a1+ x2a2= b1e1+ b2e2. (5) 

Thus, (4) yields: (b1, b2) are coordinates of the vec-

tor b in the initial orthonormal basis e1, e2; (x1, x2) are 

coordinates of the vector b in the new basis a1, a2; (a11, 

a21), (a12, a22) are coordinates of the vectors a1, a2 in the 

basis e1, e2. 

From linear algebra we know that decomposition of 

a vector in a new basis requires solving SLAE 

[Beklemishev, 1998]. Nonetheless, we can pose an in-

verse problem — to solve SLAE by decomposing the 

vector in a new basis. 

Denote the scalar projection of the vector on the vec-

tor by projab; the vector projection of the vector on the 

vector, by projab.  
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where b  a is the scalar product of b and a, a  is the 

Euclidean norm of a. The value 
b a

a
 reflects the pro-

jection length in units of e vector lengths (original base 

vector). 

The value 




b a

a a
 reflects the projection length in 

units of vector a lengths (new base vector). 

It is obvious that . 
a
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Consider the problem of finding an approximate so-

lution of SLAE. This problem arises in the absence of 

an accurate solution, ill-conditioned SLAE, a time limit 

for SLAE solution, a need for finding the variables that 

have the greatest impact on the SLAE solution, etc. It is 

this problem that faces MIT: we have to select such 

columns from the matrix A, such a spectrum of approx-

imating functions that best approximates GFV. 

SLAE solution (3) can be found by sequentially sub-

tracting from the vector b its projections on the base 

vectors included in the matrix A. However, to provide 

the most rapid convergence we should subtract the pro-

jection that can maximally reduce the norm. To do this, 

we should subtract the projection not on an arbitrary 

vector, but on the vector the projection modulus on 

which is maximum because the greater the subtracted 

projection, the lower the residual. Following this princi-

ple at each stage, we can obtain the following algorithm 

for solving SLAE (3): 
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Here, t is the iteration number; m is the number of the 

base column vector on which the projection is made; bt 

is the residual vector at the t-th iteration; xt is the vector 

of SLAE roots at the t-th iteration; MAX_T is the maxi-

mum permissible number of iterations; NORM is the 

norm at which the solution should be stopped. 

The maximum projection of the vector on the base 

vector is defined as 

 max ,
j

maxProj proj
a

b   

 arg ,max
j

m proj
a

b   

where argmax() is the function returning the index of 

the maximum element in the array; max() is the function 

returning the maximum element in the array. 

As a function argument in argmax() and max() the 

array of projection moduli b on each aj-th base vector is 

used. 
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In the first iteration of the algorithm, the vector x 

contains only zero elements, by the end of the algorithm 

the vector x includes both zero and nonzero elements. 

The base vectors of the matrix A at nonzero x elements 

comprise the resulting basis since the base vectors at 

zero elements of the vector x are not actually involved 

in the formation of the vector b. 

The algorithm provides such a subset of base vectors 

of the matrix A that optimally approximates the vector 

b. In (1) of MIT, the matrix A contains spherical func-

tions; and the vector b, GFV specified at a nonuniform 

or uniform network of magnetic stations. Thus, the es-

sence of MMC is in the field approximation (in our 

case, GFV) with the use of the optimal subset of spheri-

cal harmonics. 
 

2. RELAXATION PARAMETER  

IN THE METHOD OF MAXIMUM  

CONTRIBUTIONS 

The need has been mentioned to subtract the maxi-

mum projection, though in some cases it is impossible 

to identify one such projection (Figure 1). The moduli 

of projections on base vectors in Figure 1 are equal; the 

first of the maximum projections is chosen.  

The extremely simplified example of SLAE solution 
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shows (Figure 2) that when subtracting the entire pro-

jection (ξ=1.0) the solution converges nonuniformly; 

and if we interrupt the solution upon the limit to the 

number of iterations, it emerges that x1 ≠x2. For a more 

uniform convergence, we can subtract not the entire 

projection, but only its part (ξ≠1.0). 

Let us demonstrate the validity of this approach. Con-

sider the arbitrary vector v as the sum of two vectors 

v = ξv +(1 – ξ)v (6) 

where 0 1ξ  . 

Consider the item (c) of the algorithm: 

bt+1 = bt – projam
bt.  

Since projam
bt is a vector, using (6) we get 

 1 ξ ,1 ξ
m mt t t t   a aproj b proj bb b   

 

Figure 1. Selection of a base vector with maximum pro-

jection. To the left is a simple choice, the maximum projection 

of the vector b is on the vector a1; to the right is an ambiguous 

choice because projections of b on a1, a2 are equal in modulus; 

b (red) is the initial vector; a1, a2 (blue) are the base vectors 

on which the projection is made; black marks the projections 

of b on a1, a2 respectively 

 

Figure 2. Course of solution at different relaxation param-

eters. The horizontal axis shows the iteration number, the ver-

tical axis indicates a variable, blue is the variable x1, red is the 

variable x2 
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 1 ξ .1 ξ
m mtt t t    a aproj b proj bb b   

Thus, in the solution, not all the projection is sub-

tracted, but only its part (Figure 2). Part of the projec-

tion remains in the residual vector. Nevertheless, the 

residual continues to decrease at each iteration. It is easy 

to see (Figures 2, 3) that the residual steadily decreases 

at 0 2ξ  . 

Then, the items (b), (c) of the algorithm can be re-

written as 
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The algorithm with the above changes in terms of 

the MIT problem is the original MMC. In the source 

code of the previously developed original MMC, a con-

stant parameter ξ=0.7 was specified. Furthermore, as an 

additional criterion for stopping the algorithm not only 

the residual norm is estimated but a change in the resid-

ual norm as well. MMC is based on incomplete residual 

vector length relaxation [Faddeev, Faddeeva 1963]. 

It is worth noting that introducing ξ for solving 

SLAE with the orthogonal basis leads only to an in-

crease in the number of iterations. The use of 0 1ξ   

may be justified for a nonorthogonal and/or excess ba-

sis. In this case, the other base vectors have a higher 

chance to fall into the final basis. Using 1 2ξ   may 

be justified when solving ill-conditioned SLAE. The 

relaxation parameter ξ 1.0  can reduce the number of 

iterations sufficient for solving SLAE. Note that very 

small values of ξ can, on the contrary, lead to an in-

crease in the number of iterations. The influence of the 

parameter ξ can be compared with the learning rate, 

which determines the step length in the gradient-descent 

method, 1
ξ .

t t
  x x F   

Many researchers have studied optimal learning rate 

algorithms, but the problem is not completely solved yet. 

The learning rate in the gradient-descent method and the 

relaxation parameter in MMC have a similar mathemati-

cal sense, therefore for MMC we can use known conver-

gence optimization techniques [Jacobs, 1988]. 

Consider the items (b), (c) of the algorithm. Mathe-

matically, at any iteration the equality 

 

Figure 3. On the left (ξ=1.0) is the vector projection sub-

traction; in the center (ξ=0.5) is the half vector projection sub-

traction; on the right (ξ=2.0) is the subtraction of two vector 

projections: b (red) is the initial vector, a (blue) is the vector 

on which the projection is made; ξp (black) is the projection of 

the vector on the vector multiplied by the corresponding relax-

ation parameter; green is a deviation from the projection of the 

vector on the vector multiplied by the corresponding relaxa-

tion parameter 

1 0 1t t  b b Ax  (7)  

should hold. However, the implementation of the item 

(c) owing to the computational errors caused by floating 

point arithmetic [Goldberg, 1991] results in a violation 

of equality (7), which can give significant rounding er-

rors at a large number of iterations. This problem can be 

solved in two ways. 

The first way is to change the item (c) and to explic-

itly recalculate residual at each iteration: 

1 0 1.t t  b b Ax  (8) 

The second way is to use compensated summation 

algorithms [Kahan, 1965; Klein, 2006]. 

Note that both ways improve the numerical stability 

of the method, but reduces its speed. Formulas (7), (8) 

are shown for ξ=1, but it is obvious that they are easily 

modified for other values of ξ too. 

 

3. COMPARISON BETWEEN METH-

ODS OF SOLVING THE MAJOR SYSTEM 

OF EQUATIONS IN THE MAGNETOGRAM 

INVERSION TECHNIQUE 

Indeterminate SLAE are solved using various meth-

ods, each having advantages and disadvantages. The best 

known and frequently applied method is the ordinary 

least squares (OLS), which is also widely used in geo-

physics [Rangarajan, Rao, 1975; Weimer, 1995].  

The SLAE solution with OLS can be represented as 

 
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T T

T T

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Ax b

A Ax A b

x A A A b

  

The MIT matrix A
T
A is ill-conditioned (the condi-

tion number is ~10
20

), therefore the mathematically ex-

act solution of SLAE is incorrect; hence the need for a 

less exact but more stable solution. For this purpose, to 

solve SLAE, along with OLS we adopt the biconjugate 

gradient stabilized method (BiCGStab) because it al-

lows us to interrupt calculation at any iteration, without 

waiting for an exact solution. 

Another method of solving indetermined SLAE 

popular in geophysics is based on the matrix A singular 

value decomposition (SVD) [Pulkkinen et al., 2003]. 

This method calculates the pseudo-inverse matrix A
+
 

used for solving SLAE. 

,

,

.

T

T 









A UΣV

A VΣ U

x A b

  

One iteration performed with BiCGStab changes all 

elements of the vector x, so it is impossible to separate 

individual columns (optimal spectrum). This also ap-

plies to SVD — there are no zero columns in the matrix 

A even if we null all singular values except for the first 

one. Consequently, there are no zero values of the x 

vector coordinates. Thus, SVD and BiCGStab do not 

allow us to select a subset of SLAE columns (optimal 

spectrum of approximation), as is done with MMC. 
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Compare methods of solving the inverse problem, 

using the well-studied isolated substorm that occurred 

on August 27, 2001 as an example [Mishin et al., 2017]. 

Solve system (1) by MMC and the above two methods 

for 03:55 UT of the substorm growth phase. Since dur-

ing the substorm growth phase a smooth gain of the 

stationary magnetospheric convection takes place, the 

equivalent Hall current (ionospheric convection analog) 

[Lunyushkin, Penskikh, 2019] should reflect the classi-

cal plane two-vortex system of magnetospheric-

ionospheric convection. 

Figure 4 shows equivalent current functions for the 

Northern and Southern hemispheres calculated for the 

selected event by three different methods. It is seen that 

in the Northern Hemisphere, all methods generally give 

structurally similar equivalent current functions, but in 

the polar region OLS and SVD show small-scale chang-

es in the two-vortex convection system. In the Southern 

Hemisphere, the expected (symmetric) two-vortex sys-

tem of ionospheric convection was obtained only 

through MMC. 

One of the current function characteristics is the 

transpolar current reflecting the ionospheric convection 

intensity through the polar cap [Bazarzhapov et al., 

1979; Lunyushkin et al., 2019]. Table based of Figure 4 

for each method presents current function values in two 

main foci, the transpolar current, and the interhe-

mispheric ratio of transpolar currents. 

Magnetospheric and auroral substorms occur in two 

hemispheres simultaneously [Akasofu, 1977]. The two-

vortex system of ionospheric currents, GFV for two hem-

ispheres should generally be the same since they equally 

depend on external parameters of the solar wind and IMF, 

as well as on internal magnetospheric processes. The 

interhemispheric asymmetry is primarily affected by the tilt 

angle of the geomagnetic dipole. At a large angle, one of 

the hemispheres is more sunlit which increases the iono-

spheric conductivity and hence the ionospheric current. 

The dipole angle for August 27, 2001, 03:55 UT is 

0.24°, therefore the luminosity and related wave conduc-

tivity in the Northern and Southern hemispheres in the 

dipole coordinate system are virtually identical. Accord-

ingly, the equivalent current functions and the transpolar 

current in the Northern and Southern hemispheres 

should also be almost identical. Table shows that this 

condition holds for MMC, but does not hold for the oth-

er two methods. The equivalent current functions of the 

two hemispheres obtained by MMC are generally simi-

lar, and the ratio of transpolar currents is 0.94, i.e. is 

close to 1. On the contrary, for the other two methods 

the equivalent current functions of the Northern and 

Southern hemispheres are markedly different, and the 

transpolar current in the Northern Hemisphere exceeds 

that in the Southern Hemisphere more than two times. 

Due to the nearly zero tilt angle of the dipole, the 

interhemispheric similarity should also be observed in 

field-aligned currents and their boundaries. Figure 5 

depicts field-aligned currents for uniform conductivity 

with boundaries obtained by an automatic method 

[Lunyushkin, Penskikh, 2019]. 

 

 

Figure 4. Comparison between results of numerical methods for solving equation (1) by the example of the equivalent cur-

rent functions calculated for 03:55 UT of the August 27, 2001 isolated substorm. The top row shows current functions in the 

Northern Hemisphere; the bottom row, in the Southern Hemisphere. The first column presents MMC results; the second, OLS 

and BiCGStab results; the third, SVD results. Extension lines show values of the current function in the main foci (in kA) 
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Comparison between transpolar currents of two hemispheres 

 

Northern, kA Southern, kA 
Itr,N/Itr,S 

min max Itr min max Itr 

MMC –90 170 260 –109 168 277 0.94 

OLS+BiCGStab –122 168 290 –56 58 114 2.54 

SVD –95 132 227 –60 43 103 2.20 

 

Figure 5. Comparison between results of numerical methods for solving equation (1) by the example of field-aligned currents 

at uniform conductivity, calculated for 03:55 UT of the August 27, 2001 isolated substorm. The top row is field-aligned currents 

in the Northern Hemisphere; the bottom row, in the Southern Hemisphere. The first column presents MMC results; the second, 

OLS and BiCGStab results; the third, SVD results. R0 is the polar cap boundary, RB is the convection reversal boundary (line of 

maximum field-aligned currents of zone 1), R1 is the boundary between zone 1 and zone 2 of field-aligned currents, RH is the 

line of maximum field-aligned currents of zone 2, R2 is the equatorial boundary of the auroral oval 

 

The field-aligned currents of the two hemispheres ob-

tained by MMC are generally similar, their boundaries 

are also similar. This was not obtained by OLS and SVD 

because distributions of field-aligned currents of the 

Northern and Southern hemispheres differ greatly, and it 

is practically impossible to identify their zones. 

Thus, we can conclude that the solution derived 

with MMC proves to be the best of the three methods 

considered. 

 

CONCLUSION 

The paper gives details of the original MMC used in 

MIT. The paper has demonstrated the work of the relaxa-

tion parameter ξ in MMC and has shown that the algo-

rithm stably converges at 0 2.    The influence of the 

relaxation parameter ξ in MMC is similar to that of the 

learning rate in gradient-descent methods, thus making it 

possible to use known algorithms for optimization. Modi-

fications of the original method of maximum contribu-

tions have been proposed which increase the accuracy 

and/or the speed of solving SLAE. 
For the MIT problem, MMC, OLS+BiCGStab, and 

SVD have been compared. MMC showed the most rea-
sonable result, especially for the Southern Hemisphere. 
Calculations based on MMC also confirm the expected 
interhemispheric symmetry in equivalent current func-
tions transpolar currents, distributions of field-aligned 
currents and their boundaries. 
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