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Abstract. The paper describes the current version 

(v.1.1) of the algorithm for automatic classification of 

signals received by ISTP SB RAS decameter coherent 

scatter radars. The algorithm is a self-learning neural 

network that determines the type of scattered signals 

from the results of physical modeling of radio wave 

propagation, using radar data and international reference 

models of the ionosphere and geomagnetic field. Ac-

cording to MAGW and EKB ISTP SB RAS radar data 

for 2021, the algorithm self-learns to classify scattered 

signals into initially unknown classes based on physical-

ly interpreted parameters of radio wave propagation and 

data measured by the radar, with 15 frequently observed 

out of 20 possible hidden classes identified, 14 of which 

can be interpreted from a physical point of view. To 

demonstrate the operation of the algorithm, we present 

the first statistical analysis of observations of signals 

assigned by the algorithm to classes which we interpret 

as scattering by meteor trails and scattering with the 

sporadic E layer respectively. Through a statistical anal-

ysis of EKB and MAGW radar data during 2021–2022, 

we demonstrate the range-altitude characteristics of 

signals of these types. A correlation is shown between 

the hourly average numbers of observations of both 

classes, as well as between the hourly average line-of-

sight velocities obtained for both classes. The results 

obtained make it possible to interpret these classes as a 

meteor echo and sporadic scattering respectively, and to 

use radar data to study the interaction between the neu-

tral atmosphere (studied from meteor scattering data) 

and the lower ionosphere (studied from observations of 

sporadic scattering). Currently, this classification algo-

rithm works in ISTP SB RAS radars in automatic mode. 

Keywords: machine learning, signal classification, co-

herent scatter radars, meteor echo, sporadic scattering. 
 

 

 

 

 

 

 

 

INTRODUCTION 

The problem of classifying multidimensional exper-

imental data is complex, it is studied intensively in geo-

physics [Siwei, Ma, 2021]. One of the tools for diagnos-

tics and monitoring of the magnetosphere, ionosphere, 

and upper atmosphere is the Super Dual Auroral Radar 

Network (SuperDARN) and similar pulsed decameter 

coherent scatter radars. Today there are more than 35 

such instruments in the world [Nishitani et al., 2019]. A 

large amount of data provided by these radars is diffi-

cult to interpret automatically. Each radar transmits se-

quences of sounding pulses and receives scattered sig-

nals used to study scattering irregularities in the atmos-

phere and ionosphere. The received radar signals are a 

mixture of signals formed by various physical scattering 

mechanisms [Nishitani et al., 2019]. An important prob-

lem in interpreting data from these radars is therefore to 

identify scattered signals of different types. Currently, 

various methods are used to address the problem 

[Blanchard et al., 2009; Ribeiro et al., 2011; Lavygin et 

al., 2020], including statistical and machine learning 

methods. 
Since 2012, ISTP SB RAS has been operating the 

EKB coherent scatter radar in the Sverdlovsk Region; 

and since 2020, the MAGW radar in the Magadan Re-

gion [Berngardt et al., 2020]. The field of view of the 

EKB radar is −4°−+48°; that of the MAGW radar is 

−66°− –16°. The radars operate in a frequency band 8–

20 MHz, which increases the number of various scat-

tered signals they receive and extends the radar range to 

3500–4500 km due to hop radio wave propagation. On 

the other hand, this complicates the interpretation of the 

received signals due to the difficulty in considering 

paths of these radio waves in the ionosphere. These ra-

dars have hardware and software similar to those of 

SuperDARN radars. At the end of 2020, both radars 

started regular elevation measurements and were well 

calibrated. Using the elevation angle of a received sig-

nal allows us to estimate its propagation path and to 

formulate the problem of automatic classification of 

received signals in terms of their propagation and scat-

tering. SuperDARN radars generally do not use eleva-

tion information to automatically classify data. 
Such a problem is usually solved by initially classi-

fying data into classes: scattering by the ionosphere, 

scattering by the Earth surface, scattering by meteors, 
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etc., generally without taking into account the propaga-

tion path. The proposed approach addresses the problem 

from a different angle as construction and training of a 

scheme that will allow the algorithm to independently 

divide the data into appropriate classes according to 

propagation of these signals, and then will enable a re-

searcher to interpret each class from a physical point of 

view. 
The approach combines the learning process (classi-

fication) and the process of automatic clustering into a 

single scheme for determining previously unknown 

classes in data only from physically interpreted parame-

ters, both measured by a radar and obtained from nu-

merical simulation. This ensures, on the one hand, the 

automation of the learning process based on a huge 

amount of available data, and on the other hand, the 

physical interpretability of the results. 
The main idea of the proposed two-stage method is 

to use clustering at the first stage for all available data 

— both experimental and numerically simulated. This 

clustering is mathematical, it is substantiated only by 

the requirement relatively understandable from physical 

standpoint that the signals under study are divided into 

some bounded domains, close in shape to multidimen-

sional ellipsoids, in a multidimensional parameter space. 

This corresponds to the assumption that the signals hav-

ing different physical mechanisms of formation should 

somehow differ from each other in the entire multidi-

mensional space of the parameters measured and ob-

tained from numerical simulation. 
After such data clustering, at the second stage, the 

classifier (artificial neural network) is trained, on the 

one hand, so that it can use only the parameters well 

interpreted from physical standpoint, we have select-

ed from all available parameters, and, on the other 

hand, so that the classes it receives ("hidden classes") 

will be similar to those from clustering. In terms of 

machine learning, the approach is close to finding the 

optimal vector representation of data (optimal em-

bedding), the coordinates of which are the probabili-

ties of signal belonging to each of the hidden classes. 

The learning method is called Wrapped Classifier 

with Naive Teacher. 
It is generally easiest for researchers to classify radar 

data visually by analyzing diurnal variations of a signal, 

taking into account the continuity of signal observation 

regions and their dynamics in time—distance coordi-

nates. For example, meteor echoes are usually observed 

as time-fragmented signals at short (up to 450 km) dis-

tances. Scattering by the Earth surface in these coordi-

nates has the form of a horseshoe-shaped region, where 

long distances (ends of the horseshoe) correspond to 

sunrise and sunset; and close ones (the middle of the 

horseshoe), to noon [Nishitani et al., 2019]. Scattering 

by field-aligned irregularities is often observed after 

sunset in the form of a region extended in distance and 

time. Clustering into some bounded domains has there-

fore be chosen as the clustering algorithm, with each 

measurement day at each radar (experiments) clustered 

independently of the others. The peculiarity of the algo-

rithm is that the classifier has trained to divide classes in 

the entire set of available experiments (radars, days) so 

that the classification it generates is close to splitting of 

each of these experiments into clusters individually up 

to permutation of class numbers. 
 

MATHEMATICAL DESCRIPTION 
OF THE PROBLEM  

AND CLASSIFIER TRAINING 

The proposed algorithm improves on the model 

[Berngardt et al., 2022] and is its simpler and better 

interpreted version from physical and mathematical 

points of view. 
The initial dataset used to train the algorithm in-

cludes both measured and simulated parameters. It is a 

set of 15-dimensional vectors ,е mX , where the index e 

numbers experiments (days and radars), and m is the 

ordinal number of the vector of observations within one 

experiment. Coordinates of this vector correspond to 

different parameters. 
Some of the parameters are directly measured by the 

radar: time, azimuth, radar range, sounding signal fre-

quency, elevation angle of a received signal, Doppler 

frequency shift, and received signal spectral bandwidth. 
The other part is obtained from numerical simulation 

of radio wave propagation based on estimated signal 

parameters and experimental set up — time, geographic 

coordinates of the radar, radar range, elevation angle, 

azimuth of sounding, and sounding frequency. As a 

result of the simulation, eight parameters are calculated 

which characterize the signal propagation path to a scat-

tering point: scattering height, effective scattering 

height, the number of propagation hops, angle between 

the propagation path and the geomagnetic field at the 

scattering point, and angles between the path and the 

horizon at the scattering point and at each quarter of the 

radar range to the scattering point. The propagation path 

is calculated by the geometrical optics method (ray trac-

ing) [Ginzburg, 1970] in the nonmagnetized ionosphere 

approximation. The output parameters of the radio sig-

nal propagation model, which are used for training the 

neural network, are shown in Figure 1.  

To describe the path, the following eight parameters 

have been chosen: sine of the angle between the ray 

trajectory and the horizontal direction at a point at 1/4, 

2/4, 3/4, and 4/4 of the radar range to a scattering point 

 

Figure 1. Scheme of calculation of physical parameters 

determined by numerical simulation. The solid black line is 

the radio signal propagation path calculated using ray tracing. 

The blue arrow is the geomagnetic field direction; horizontal 

green lines mark the horizon direction; green solid arrows, the 

radio signal propagation direction 
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(group delay) — the parameters sin(k, xy)[R/4], sin(k, 
xy)[R/2], sin(k, xy)[R3/4], sin(k, xy)[R] respectively; 
cosine of the angle between the ray trajectory and the 
geomagnetic field at a point at the radar range of the 
signal — parameter cos(k, B); Mode is the number of 
reflections from the Earth surface +1; scattering height 
(the height of the trajectory point at a fixed radar range) 
with regard for refraction (hiri) and without regard for 
refraction in the ionosphere (heff). Additional two pa-
rameters that are quite often used for separating signals 
of different types are the recorded Doppler frequency 
shift and spectral signal broadening (m/s). The trajecto-
ry parameters are selected such that they are close to 
zero in the following cases: 1) scattering by field-
aligned irregularities, cos(k, B) is close to zero; 2) scat-
tering by the Earth surface (first-hop groundscatter), 
sin(k, xy)[R/2] is close to zero since near this point re-
flection occurs from the ionosphere and the radio wave 
vector at the point is almost horizontal; 3) double scat-
tering by the Earth surface (second-hop groundscatter), 
sin(k, xy)[R/4], sin(k, xy)[R 3/4] are close to zero since 
near these points reflection occurs from the ionosphere 
and the radio wave vector at them is almost horizontal. 
The sign of sin(k, xy)[R] allows us to determine the di-
rection of the radio wave vector: toward Earth (nega-
tive) or from Earth (positive), which also simplifies sub-
sequent interpretation of signals. The Mode parameter 
also allows us to separate one-hop and two-hop signals, 
which is important for interpretation. Heights, veloci-
ties, and spectral widths provide a more correct interpre-
tation of a scattered signal and are often used in various 
methods of classifying data from SuperDARN and 
analogous radars [Ribeiro et al., 2013]. The ten parame-
ters described above are the same as in [Berngardt et al., 
2022]. Thus, the classifier model takes into account the 
regional peculiarities of the formation of scattered sig-
nals of different classes only through the international 
reference models of the ionosphere and geomagnetic 
field (IRI, IGRF), and observation of signals of a partic-
ular class is manifested only in the relative rate of oc-
currence of such signals, which is one of the physical 
assumptions of this model. As will be shown below, 
differences do exist in the rate of occurrence of signals 
of different classes in different radars. Obviously, this 
assumption is rather rough, but in the first approxima-
tion, as shown in [Berngardt et al., 2022] and in this 
paper, it yields interpretable results.  

Ionospheric refraction is calculated using the Interna-
tional Reference Ionosphere IRI [Bilitza et al., 2014] with 
parameters recommended by the developers. The geomag-
netic field is calculated with the aid of the International 
Geomagnetic Reference Field IGRF [Thébault, 2015]. As 
input parameters for calculating the radio wave trajectory 
we utilized the elevation angle of a received signal (it was 
assumed to coincide with the elevation angle of radiation); 
radar beam azimuth; operating frequency of the radar; geo-
graphic location of the radar; date; time; radar range (group 
delay of a signal) from the radar to the scattering point. The 
required smoothness of the ionosphere in the calculations 
was provided by its approximation by second-order local B 
splines. The ionosphere is assumed to be two-dimensional 
inhomogeneous (in the plane of signal propagation in dis-
tance and height). Features of the simulation are discussed 

in more detail in [Berngardt et al., 2022]. 
The first stage of training the model is to split all 

available 15-dimensional data on ,е mX  into clusters — 

compact areas that resemble ellipsoids in a 15-

dimensional space. To do this, the distribution 

 ,e meP X  of data values is approximated by a linear 

combination of twenty 15-dimensional Gaussian dis-

tributions 
,e nyp with unique parameters for each ex-

periment 
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Here N=20, the weights 
,e nyA and parameters 

,e ny  of 

the 15-dimensional Gaussian distributions are calculated 

by fitting experimental data on ,e mX  with the aid of the 
maximum likelihood method [Dempster et al., 1977]. 

This problem is solved by searching for unknown pa-

rameters 
,

,
e nyA

, ,e ny  which define the division of the 

,e mX  dataset, obtained in each of the experiments e, 

into clusters with numbers ye,n. 
The cluster numbers ye, n, to which the corresponding 

points ,e mX  belong, are the numbers from 1 to N, which 

are obtained automatically by the clustering algorithm. 
At the second stage, the final data classifier is 

trained through the constructed data clustering ye,n. The 

problem of constructing an optimal classifier is to find a 

function ()g that receives a vector ,e mx  at the input as a 

projection of the vector ,e mX  onto a 10-dimensional 

subspace of the selected physical parameters convenient 

for subsequent interpretation. 
Thus, the classification that we want to obtain 

should, on the one hand, repeat the clustering, derived at 

the previous stage, quite well; on the other, use only 

those parameters for this purpose that we will later be 

able to confidently interpret from a physical point of 

view. This solution is found as an approximate solution 

of the problem 
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All unknown parameters (Cl, bk,l,e and the function 
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parameters ()g ) are found by selecting experimental 

data as solutions of (2). Dimensions of the vectors 

,ef g  are the number of clusters (N=20) and hidden 

classes (K=20) taken to be equal. Summation in the 

formula is carried out using hidden classes k to ensure 

the correct permutation of class numbers within each 

individual experiment e (this process is discussed in 

more detail in [Berngardt et al., 2022]). This permuta-

tion is unique for each experiment e, and the summation 

by hidden classes l is carried out for a possible combina-

tion of similar hidden classes and actually tries to make 

a prediction of the probability of a class predicted by 

Naive Teacher from a linear combination of probabili-

ties of hidden classes yielded by the wrapped classifier. 
The problem was solved by one of the widely used 

upgrades of the gradient descent method — the moment 

method ADAM [Goodfellow et al., 2016]. As an opti-

mality condition, the classical approach to solving clas-

sification problems has been utilized — minimizing the 

Weighted Cross Entropy WCE [Goodfellow et al., 2016] 

 , , , ,

,

log ,k right j k left j k

j k

WCE W Y Y   (4) 

where Wk are balancing weights inversely proportional 

to the number of data in class k; the index j numbers 

objects in the learning dataset: pairs (experiment num-

ber, object number in the experiment), 

, , ,right j kY , ,leftt j kY are the right and left sides of Equation 

(2) respectively. 
There are two criteria of optimality of the resulting 

classifier. The first, mathematical, is that the classifica-

tion of each experiment performed by the wrapped clas-

sifier up to permutation of class numbers most closely 

corresponds to the division of this experiment made by 

Naive Teacher. Fulfillment of this criterion is the result 

of training the neural network, and deviations from such 

an optimal classification are used in training as a func-

tion that we want to minimize by training the neural 

network (also known as loss function, Expression (4)). 

The quality of the result is evaluated numerically by the 

quality metric (the so-called internal quality assessment 

AURPC), which is described below. 
The second criterion, physical, is that the data on 

each individual class obtained from the classification 

can be interpreted from a physical point of view as sig-

nals received due to a specific scattering mechanism. 

Fulfillment of this criterion is checked by statistically 

analyzing the data by an expert after being classified by 

a trained classifier (the so-called external quality as-

sessment). Optimization of this criterion consists in se-

lecting the structure (architecture) of the neural network 

and input parameters to achieve the required quality of 

interpretation. An example of such an expert analysis in 

a similar problem is given in [Berngardt et al., 2022]. 
As Naive Teacher we have chosen the probabilistic 

Gaussian Mixture method [Vander Plas, 2016] present-

ing data as random, having a probability distribution 

equal to a linear combination of multidimensional nor-

mal distributions whose parameters (weight, mean, and 

covariance matrix) are determined automatically during 

data analysis, and the number of these normal distribu-

tions is fixed and set by the researcher. The choice of 

the number of classes is governed by the following. The 

Gaussian Mixture model is characterized by the fact that 

it divides the data exactly into the number of classes 

given by N. The scheme of constructing the wrapped 

classifier places only upper limit on the number of hid-

den classes K. If possible, the real number of hidden 

classes with a non-zero number of elements may be-

come smaller after training, i.e. the algorithm can com-

bine close classes if this does not degrade the accuracy 

of the approximation. Thus, for N and K it is convenient 

to choose a sufficiently large number that exceeds the 

expected number of different types of signals in ad-

vance. Radar studies usually identify about a ten of such 

types qualitatively distinguishable by the range or spec-

tral characteristics of signal: scattering of one-hop and 

two-hop signals by the Earth surface, meteor scattering, 

scattering by field-aligned irregularities of the E layer 

(two-stream and gradient-drift), scattering by field-

aligned irregularities of the F layer, scattering by spo-

radic layers, mesospheric echo, etc. The number of clas-

ses N, K was therefore chosen to be twice the expected 

number of different classes such that the wrapped classi-

fier could correspondingly reduce the number of detect-

ed classes if necessary. This is also related to the sim-

plicity of the clusterer employed (Gaussian Mixture), 

which aims to roughen and simplify the clustering in the 

hope that the statistical nature of its errors in each ex-

periment will allow the formation of hidden classes 

more resistant to such errors. As further analysis has 

shown, the actual number of interpreted hidden classes 

with a significant number of observations, in fact, rang-

es from 15 to 18. 

The function  ,e nOHE y  has only one non-zero co-

ordinate corresponding to the cluster number ye,n, 

 
,, , .

e nm e n y mOHE y    (5) 

The classifier function ()g  is approximated by a 

three-layer fully connected neural network with about 

30 thousand free parameters, 133 neurons, and ReLU 

activation functions in each hidden layer, and the Soft-

Max activation function in the output layer. Thus, the 

function is normalized so that 

1

1,
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g
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This allows us to interpret the output of the function 

()g  as probabilities that ,e mх  belongs to the hidden clas-

ses {1..K} defined by the coordinates gi. To improve the 

quality of training, the layers are separated from each 

other by batch normalization layers. The network archi-

tecture is illustrated in Figure 2, b. 

As testing has shown, the three-layer network ()g  is 

enough for qualitatively solving the problem, more or 

less deep networks do not improve the quality. 
To improve the quality of the classifier, the dimension 
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Figure 2. Architecture of the Wrapped Classifier with Naive Teacher and vector dimensions: network architecture in learn 

mode (a); classifier architecture (b); network architecture in processing mode (c). "None" stands for the number of records in the 

dataset  
 

of the input data was increased by the method of feature 

space. The efficiency of its use in a similar problem is 

shown in [Berngardt et al., 2022]. It is assumed that in 

this variant its use will also be effective. It was chosen 

in the form of a polynomial transform  PF x  
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 (7) 

This transform increases the initial dimension N of 

the input vector ,e mx to N+N(N+1)/2+1 and thereby 

simplifies the solution of the data classification prob-

lem. The use of this transform was facilitated by the fact 

that the weighted sum of squared Doppler shift and sig-

nal bandwidth is already widely utilized as a good crite-

rion for identifying groundscatter signals [Blanchard et 

al., 2009]. Thus, taking into account squares of the input 

features and cross products of the input features can 

increase the classification efficiency. A characteristic 

benefit of using the feature space PF at the input of the 

neural network is that the neural network during learn-

ing eliminates the coordinates that are not essential for 

the optimal solution, leaving only the essential ones. 

Increasing the space dimension will allow us to employ 

simpler networks for the classification, but by increas-

ing the number of free coefficients of the neural net-

work and by increasing the size of the dataset required 

for its training. The efficiency of applying the polyno-

mial feature space to this problem has been demonstrat-

ed in [Berngardt et al., 2022] when considering the pre-

vious version of the wrapped classifier. Omitting PF in 

the clusterer was intended to roughen the clusterer and 

introduce more errors into it in each individual experi-

ment in order to make the hidden classes of the classifi-

er more resistant to errors due to the statistical nature of 

learning. 
A large number of unknown values of C l,e, bk, l,e in 

(3) makes it possible to optimally approximate an arbi-
trary permutation of ye, n by the coordinates gi of the 

function ()g  for each experiment e separately, so that 

g  does not depend on e and, as expected, is determined 

solely by the shape of signal clusters in the N-
dimensional space of their parameters. 

The main difference between this model and the 
previous version described in [Berngardt et al., 2022] 

is the model shape  ef g  and the requirement 

, 0l eC   in (3). This makes it possible to interpret the 

function g  more confidently as the probability of 

hidden classes from which we can obtain cluster 

probabilities ef  through a simple linear transform 

with nonnegative coefficients. Moreover, this modifi-
cation made it possible to significantly simplify the 

function model g , to obtain better separation results, 

and to conduct its better training due to a smaller 
number of free coefficients in the model (30 thousand 
instead of 80 thousand free parameters). 

Thus, the proposed classification scheme consists of 

two consecutive neural networks (Figure 2, a) one of 

which (classifier) provides an optimal representation of 

data in the form of a 20-dimensional vector, which fur-
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ther we interpret as probabilities of hidden classes. The 

second network (Wrap) converts the probabilities of 

hidden classes into cluster numbers of a dataset clus-

tered by Naive Teacher. The classifier network and the 

wrap network are jointly trained to best match their out-

put to clustering of this dataset by Naive Teacher. 
The clusterer independently clusters data from ex-

periment to experiment (from day to day, from radar to 

radar): the same types of scattering in different experi-

ments may have different cluster numbers. Therefore, 

when interpreting the clustering results, we should re-

number them. We cannot completely trust this teacher 

and be sure that its clustering is correct. That's why we 

call this teacher naive. Relying on the results of its clus-

tering, we build and train an optimal classifier that per-

forms optimal classification based on physics of radio 

wave propagation and has greater capabilities for gener-

alization and interpretation than Naive Teacher. 
The number of neurons in each layer of the classifier 

(133) was chosen in accordance with the Kolmogorov—

Arnold theorem [Arnold, 1963] for the most optimal repre-

sentation of the input data. The classifier has about 30 000 

trained parameters, and the wrap has about 153 000 ones, 

which is significantly less than in the previous version of 

the classifier [Berngardt et al., 2022]. 
To speed up network training, each stage was per-

formed sequentially, with the obtained datasets stored in 

the repository. To interpret new data points, only a 

trained classifier and a radio wave propagation model 

are required. The wrap network and the clusterer are not 

used in the forecast (Figure 2, c). 
The classifier model receives ten input parameters at 

the input, only two of which (Doppler shift and spec-

trum width) were directly measured by the radar, and 

the remaining eight were obtained from numerical simu-

lation based on the measured received signal parame-

ters. These parameters are shown in Figure 1; they have 

been discussed in more detail in [Berngardt et al., 2022]. 
This architecture (classifier+wrap) allows us to au-

tomatically renumber the cluster numbers for each ex-

periment independently and increases the accuracy of 

reconstructing the classifier function g . During train-

ing, as a loss function the weighted cross-entropy is 

utilized, where the weights are the inverse element 

number in the cluster encountered in the training da-

taset. This enables us to automatically balance the da-

taset and thereby improve the quality of fitting. 
AURPC (AUC-RP) is used as a prediction quality 

metric since it works quite correctly in case of possible 

class imbalance. To detect overtraining, we use the early 

stopping method of training after more than twenty un-

successful training epochs based on the AURPC metric 

in the validation dataset. The gradient descent method is 

used with the ADAM optimizer with a packet size of 

32. For the training, the dataset from the two radars for 

January–September 2021 (~3 million records) was di-

vided into training, validation, and test datasets in the 

ratio 64:16:20 %. The learning process corresponds to 

that described in [Berngardt et al., 2022]. 
Figure 3 illustrates the division of experimental data 

into classes through the example of the data for April 

2022. The neural network assigned the class numbers 

independently during training, but in what follows we 

interpret only classes 2 and 13. 

 

Figure 3. Example of operation of the algorithm using ISTP SB RAS data from EKB (left) and MAGW (right) radars on April 

25, 2022. From top to bottom: ionospheric scattering classes (a, b); groundscattering classes (c, d); meteor scattering classes (e, f); 

unidentified classes (g, h); rarely observed classes (i, j) 
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Figure 4 shows the distribution of the number of de-
tected signals in different classes. The actual number of 
hidden classes with a non-zero number of objects is 
seen to be 18, two of which, 9 and 18, are poorly de-
fined data (data distributed approximately evenly in the 
range-time diagram, we usually do not analyze later on), 
and several classes that are very rare (1, 5, and 7, with 
classes 1, 5 found only for the EKB radar). Class 15 is 
uninterpreted in terms of propagation — the average 
scattering heights hiri exceed the height of the F2-layer 
maximum, which suggests that in this case the radio 
signal propagation path is calculated incorrectly: either 
the ionosphere in these cases does not correspond to the 
model (this is possible given the existing accuracy of 
the IRI model) or the angle of signal arrival is estimated 
incorrectly (this is also possible given the difficulties in 
calculating the elevation angle of signal arrival). Thus, 
the total number of interpreted classes is 14, and their 
total percentage in the data from various radars is from 
50 to 60 %, which suggests that about half of the rec-
orded radar data can be automatically interpreted in 
terms of model propagation of radio signals by the pro-
posed method. This is in good agreement with the quali-
tative expectations and results of the previous version of 
the algorithm [Berngardt et al., 2022]. Figure 4 indicates 
that there are radar-dependent features in the data. In 
particular, classes 1, 5 are observed only on EKB. There 
is also a clear imbalance in the observation of the same 
classes on different radars (for example, 8, 10, 16), 
which might have been caused by both the technical 
characteristics of the radars (different noise levels and 
slightly different antenna gain coefficients) and regional 
features of the ionosphere (the MAGW field of view is 
more deviated from the north than the EKB one). 

 

Figure 4. Frequency distribution of observed signal clas-

ses in the EKB and MAGW ISTP SB RAS data during train-

ing on logarithmic (top) and linear (bottom) scales 
 

FIRST PRELIMINARY RESULTS 
AND THEIR INTERPRETATION 

Further study is devoted to class 13, interpreted as me-

teor scattering, and to class 2, interpreted as a result of 

sporadic scattering in the ionosphere. Detailed analysis 

of the remaining classes defined by the neural network 

is beyond the scope of this work. To substantiate this 

interpretation of the classes identified independently 

by the proposed neural network, Figure 5 shows the 

altitude-range distributions of EKB and MAGW radar 

data belonging to these classes for 2021–2022. 
The distribution of the heights of the appearance of 

class 13 on both radars is seen to be within 50–150 km 

with a maximum near 80–90 km, which corresponds 

closely to the scattering by meteor trails [Chisham, 

Freeman, 2013; Fedorov, Berngardt, 2021]. The range 

is from the minimum radar range of 180 km to ~400 

km with a strong decrease in the occurrence rate with 

distance, which also corresponds closely to the statis-

tics of observations of meteor scattering found from 

the data by another method [Fedorov, Berngardt, 

2021]. 
The altitude-range distribution of class 2 differs 

from that of class 13. The range of distribution heights 

has expanded from 0 to 250 km, near ranges and low 

altitudes most likely corresponding to groundscatter 

with high elevation angles (it is not yet possible to veri-

fy owing to the problem of phase uncertainty in inter-

ferometric observations of radars of this type [Chisham, 

Freeman, 2013]), which at such short ranges corre-

sponds to scattering by lower ionospheric layers with 

altitudes below 200 km. This can be interpreted as scat-

tering by the sporadic layer and subsequent scattering 

by the Earth surface.  
This mechanism is supported by an increase in the 

effective scattering height below 500 km, which may 

be due to underestimation of sporadic layers by the 

IRI model. The second portion of the scattered sig-

nals is concentrated near 100 km and is observed 

mainly at 300–500 km. This suggests the possibility 

of interpreting the class 2 signals as a mixture of di-

rect scattering by the sporadic layer and scattering by 

the Earth surface after scattering by the sporadic layer. 
The interpretation of class 2 as suitable for the diag-

nosis of the sporadic layer is also supported by line-of-

sight velocities close to neutral wind velocities, diag-

nosed from the Doppler shift of the frequency of the 

received signal. Figure 3, a, b, e, f shows that classes 13 

and 2 are very fragmentary (sporadic) in time and space 

(marked with blue colors in Figure 3, a, b, e, f); there-

fore, for further comparative statistical analysis it is 

convenient to use their 1-hour averaged parameters. 
Figure 6 exemplifies the behavior of the line-of-sight 

velocity (top) and the number of scattered signals (bot-

tom) averaged over 1 h. Black color marks class 13 

(meteor echo); red color, class 2 (sporadic scattering). 

These two classes are seen to correlate well in terms of 

the rates and periods of occurrence of signals. In terms 

of formation mechanisms, class 2 can be interpreted as 

scattering by sporadic layers, whose formation mecha-

nism in the lower ionosphere is one of the controversial 

issues in its research, may be associated with meteors 

[Malhotra et al., 2008], and requires high temporal and 

spatial resolution for a reliable study. Such a high tem-

poral resolution (from units of seconds to minutes) is  
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Figure 5. Comparison of altitude-range distributions of classes 13 and 2 for January 2021 – March 2022. Altitude-range distribu-

tion of the rate of observation of traces (a1–d1); rate of occurrence of scatterers depending on the height calculated from signal prop-

agation path (a2–d2); signal distribution as a function of radar range (a3–d3) 
 

provided by SuperDARN radars and similar EKB and 

MAGW radars of ISTP SB RAS. Statistical confirma-

tion of this correlation for the full dataset on 2021–2022 

is illustrated in Figure 7. Linear (Pearson) and rank 

(Spearman) correlations are shown in Table. 

The correlations are seen to range from 0.52 to 

0.76, which confirms the significant positive correla-

tion shown in Figure 7 between hourly average signal 

parameters in the meteor and sporadic echo classes. 

In all cases, the calculated significance level of the 

absence of correlation (p-value) is lower than 10
–6

 

(omitted in Table), which indicates the significance 

of the correlation. A slight excess of the Spearman 

correlation over the Pearson correlation (~10 %) in-

dicates the presence of not only a strong linear corre-

lation, but possibly a weak nonlinear correlation. The 

different slope in panels of Figure 7, A, C for the 

number of observations of sporadic echo on the ra-

dars can be associated with both the features of the 

sounding geometry (the MAGW radar field of view is 

more inclined to the west than the EKB radar one) 

and regional features of the ionosphere, and requires 

additional analysis. The method of classifying signals 

received by radars described in the work and the pre-

liminary analysis carried out in the work make it pos-

sible in the future to use a comparative analysis of 

these two classes for diagnosing the neutral iono-

sphere coupling in the lower ionosphere. 
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Figure 6. Line-of-sight velocities (a–d) measured with the 

EKB and MAGW radars and the number of detected signals 

(e–h) in spring (a, b, e, g) and summer (b, d, f, h) in 2021 for 

classes 13 (black line) and 2 (red line) 

 

 

Figure 7. Relationship between the number of scattered 

signals (a, c) and hourly average velocities (b, d) in classes 

13 (meteor echo) and 2 (sporadic scattering) as recorded by 

the EKB (a, b) and MAGW (c, d) radars 
 

Pearson and Spearman correlations between meteor and 

sporadic echoes according to EKB and MAGW data 

Correlation coefficient EKB MAGW 

Pearson by the number of observations 0.636 0.718 

Spearman by the number of observations 0.716 0.761 
Pearson by the Doppler velocity 0.527 0.564 
Spearman by the Doppler velocity 0.591 0.652 

CONCLUSIONS 

The paper describes the current version of the al-

gorithm for automatic classification of signals (v.1.1) 

received by ISTP SB RAS decameter coherent scatter 

radars. The algorithm, which we called the Wrapped 

Classifier with Naive Teacher, is a self-learning neu-

ral network that determines the type of scattered sig-

nals from the results of sounding and numerical simu-

lation of radio wave propagation. Radio signal propa-

gation is calculated by the geometrical optics (ray 

tracing) method using radar data and the international 

reference models of the ionosphere (IRI) and geo-

magnetic field (IGRF). The model self-learns using 

the results of preliminary classification of data by 

Naive Teacher. The naive teacher algorithm is clus-

tering of data by a statistical model of a mixture of 

multidimensional normal distributions. It splits the 

data into clusters, which are then used to search for 

hidden classes in the data according to those physical 

parameters (obtained from radar data, as well as as 

from physical simulation of radio wave propagation) 

that can then be effectively interpreted. The neural 

network self-learned using MAGW and EKB ISTP 

SB RAS data for 2021. 
The resulting hidden classes found by the classifi-

er can be physically interpreted by statistically ana-

lyzing the distribution of physically interpreted pa-

rameters of signals belonging to each class. This 

classifier is an upgrade of the classifier proposed ear-

lier in [Berngardt et al., 2022], and has a better quali-

ty of division into classes, as well as a simpler archi-

tecture with fewer free parameters found as a result 

of self-learning. 
To demonstrate the operation of the classification 

algorithm, the first statistical analysis of observations of 

signals assigned by the algorithm to classes 13 and 2, 

interpreted by us as scattering by meteor trails and scat-

tering with the sporadic E layer respectively, has been 

carried out. The comprehensive analysis of EKB and 

MAGW statistical data for 2021–2022 has revealed the 

range-altitude characteristics of signals of these types. 

The correlation has been shown between the hourly 

average numbers of observations of both classes, as well 

as between the hourly average line-of-sight velocities 

obtained in the data of both classes. We believe that the 

results will allow us to use radar data for studying the 

interaction between the neutral atmosphere (studied 

from meteor scattering data) and the lower ionosphere 

(studied from observations of the sporadic E layer) at 

spatially close points with high temporal resolution. 

Currently, the data classification algorithm works in the 

ISTP SB RAS radars in automatic mode 

[http://sdrus.iszf.irk.ru/node/95]; the code of the trained 

neural network of the classifier is available at 

[https://github.com/berng/WrappedClassifier]. 
The ISTP SB RAS EKB radar is included in the 

Shared Equipment Center “Angara” [http://ckp-

rf.ru/ckp/3056]. The radars were operated with the 

financial support of the Ministry of Science and 

Higher Education of the Russian Federation (subsidy 

No. 075-GZ/S3569/278). The EKB and MAGW ISTP 

http://sdrus.iszf.irk.ru/node/95
https://github.com/berng/WrappedClassifier
http://ckp-rf.ru/ckp/3056
http://ckp-rf.ru/ckp/3056


O.I. Berngardt 

72 

SB RAS data are available at 

[http://sdrus.iszf.irk.ru/ekb/page_example/simple]. The 

model was trained partially using the equipment of 

the Public Access Center Bioinformatics of the Fed-

eral Research Center Institute of Cytology and Genet-

ics SB RAS (ICG SB RAS). I am grateful to I.S. 

Petrushin (Irkutsk State University) for useful discus-

sions. The work was financially supported by RFBR-

CNRS Grant No. 21-55-15012. 
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