
26

ГЕОМЕТРИЯ И ГРАФИКА № 4. 2022

                                                                                                    
DOI: 10.12737/2308-4898-2022-10-4-26-34

С.В. Страшнов 
Канд. техн. наук, заведующий кафедрой,
Российский университет дружбы народов,
Россия, 117198, г. Москва, ул. Миклухо-Маклая, д. 6

Компьютерное моделирование 
новых форм строительных 
оболочек

Аннотация. Представлено большое число новых поверх-
ностей, формируемых конгруэнтными кривыми с изменяю-
щейся кривизной, но, остающихся в одном классе, и супер-
эллипсами. Все поверхности входят в классы «Поверхности 
вращения», «Поверхности переноса велароидального типа» и 
«Алгебраические поверхности с каркасом из трех главных 
плоских кривых». Все поверхности одного класса задаются 
одними и теми же общими явными и параметрическими 
уравнениями, а благодаря наличию многих констант в урав-
нении суперэллипса можно получить очень много известных 
и новых поверхностей. Несмотря на то что методика постро-
ения рассматриваемых поверхностей известна, в представлен-
ной статье она проиллюстрирована и визуализирована на 
многих примерах. Поверхности строились с помощью мате-
матического пакета программ MATLAB. Поверхности враще-
ния суперэллипса общего вида строились на основе новой 
компьютерной программы, позволяющей их визуализировать 
в мультимедийном режиме путем заданного изменения пока-
зателей степеней, содержащихся в формуле меридиана — су-
перэллипса. Все построенные поверхности вращения имеют 
общее название – суперэллипсоиды вращения. Впервые по-
казано, что алгебраические поверхности с заданным каркасом 
в трех взаимно перпендикулярных плоскостях, применяемые 
в судостроении, могут найти применение и в архитектуре 
общественных зданий. В качестве жесткого каркаса поверх-
ностей используются суперэллипсы. В обзорном разделе ста-
тьи на основании имеющихся публикаций показано, что ге-
ометрия формы влияет на напряженно-деформируемое со-
стояние оболочек с предлагаемыми срединными поверхно-
стями. Материалы статьи дают возможность в дальнейшем 
найти оптимальные оболочки, очерченные по рассматривае-
мым аналитическим поверхностям трех различных классов, 
которые рассмотрены в статье, с учетом применяемых в ар-
хитектуре, строительстве, машиностроении и судостроении 
критериев оптимальности.
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Abstract. A large number of new surfaces are presented, formed 
by congruent curves with variable curvature, but remaining in the 
same class, and superellipses. All surfaces are included in the class-
es Rotation Surfaces, Velaroidal Translaation Surfaces, and Algebraic 
Surfaces with a Carcass of Three Main Flat Curves. All surfaces of 
the same class are defined by the same general explicit and para-
metric equations, and thanks to the presence of many constants in 
the superellipse equation, it is possible to obtain a lot of known and 
new surfaces. Despite the fact that the method of construction of 
the considered surfaces is known, in the presented article it is il-
lustrated and visualized on many examples. The surfaces were 
constructed using a numeric computing environment MATLAB. 
The surfaces of a general-view superellipse were built on the basis 
of a new computer program that allows them to be visualized in a 
multimedia mode by a set change in the exponents contained in 
the meridian-superellipse formula. All built rotation surfaces have 
a common name — superellipsoids of rotation. For the first time 
it is shown that algebraic surfaces with a given frame in three mu-
tually perpendicular planes, applied in shipbuilding, can also find 
application in the architecture of public buildings. Superellipses 
are used as the rigid frame of surfaces. In the overview section of 
the article on the basis of the available publications it is shown that 
the geometry of the form affects the stress-deformable state of shells 
with the proposed medial surfaces. The materials of the article give 
an opportunity in the future to find the optimal shells outlined on 
the considered analytical surfaces of three different classes, which 
are considered in the article, taking into account the criteria of 
optimality applied in architecture, construction, engineering and 
shipbuilding.

Keywords: computer simulation, analytical geometry, Velaroidal 
Surfaces, surfaces of rotation, superellipse, algebraic surfaces with 
a given frame from three plane curves, shell optimization.

Введение
 Начало XXI в. ознаменовалось всплеском иссле-

дований по компьютерному моделированию поверх-
ностей и их приложению к реальным объектам ар-
хитектуры и строительства [1; 15], машиностроения 
[16], судостроения [11], к скульптурным формам [12; 
21], топографии [29] и т.д.

 Если в машиностроительных отраслях примене-
ние сложных поверхностей, требующих компьютер-
ного моделирования, вызвано разными технологи-
ческими требованиями, то в архитектуре промыш-
ленных и гражданских зданий многое связано с 
личностью архитектора, его вкусами и предпочтени-
ями. Архитекторы разделились на несколько групп. 
Одни считают, что нужно уходить от прямоугольных 
форм и внедрять разнообразные криволинейные 
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формы сооружений [10], другие считают, что пара-
метрическая архитектура, основанная на применении 
простых и сложных форм, описываемых аналитиче-
скими формулами, себя исчерпала и возник стилевой 
кризис [6], и что надо соблюдать в архитектуре чув-
ство меры [3]. В настоящее время геометры практи-
чески закончили полную классификацию аналити-
ческих поверхностей [5; 20], распределив их по  
38 классам и далее по подклассам, группам и под-
группам. Несколько классификаций аналитических 
поверхностей приведены в статье [20]. Однако сейчас 
непрерывно появляются новые поверхности, которые 
геометры и ученые-расчетчики предлагают к внедре-
нию [8; 17; 23; 24]. 

 Имеются исследования по поиску конкретных 
примеров внедрения аналитических поверхностей в 
практику [15; 22]. Установлены известные геометрам 
аналитические поверхности, которые ещё не нашли 
реального воплощения в сооружениях, конструкци-
ях и изделиях [22]. Некоторые исследователи рабо-
тают над применением компьютерного моделирова-
ния к существующим поверхностям [18; 25] или 
совершенствуют существующие компьютерные про-
граммы для моделирования новых поверхностей [9] 
и оболочечных конструкций [7], или создают аль-
тернативные подходы к компьютерному моделиро-
ванию [4].

Цель исследования
Далее рассмотрим некоторые задачи компьютер-

ного моделирования поверхностей, не рассмотренные 
ранее в научно-технической литературе, в том числе 
геометрическое моделирование малоизвестных ана-
литических поверхностей, и покажем, что геометрия 
формы влияет на напряженно-деформируемое со-
стояние оболочек. Связь формы конструкции и её 
прочности хорошо показана в работе [31], что под-
тверждает необходимость поиска новых поверхностей. 

 Цели исследования, обозначенные в работе  
И.А. Мамиевой [15], отличаются от целей, указанных 
в настоящей статье. Если в работе [15] указываются 
хорошо известные поверхности, которые можно 
видеть в формах уже построенных сооружений, то в 
настоящей статье предлагаются для будущего вне-
дрения ещё малоизученные или неизвестные пока 
аналитические поверхности, которые до настоящего 
времени не воплощены в реальные сооружения. 
Некоторые из этих поверхностей названы в статье 
[22]. В настоящей статье предлагаются для рассмот- 
рения велароидальные поверхности, поверхности 
вращения суперэллипсов общего вида и поверхности 
с главным каркасом из трех суперэллипсов.

На основе упрощенной методики, разработанной 
С.Н. Кривошапко и В.Н. Ивановым [13], предлага-

ется в дальнейшем найти оптимальные оболочки, 
очерченные по рассматриваемым аналитическим 
поверхностям трех различных классов, которые рас-
смотрены в статье, с учетом применяемых в архи-
тектуре, строительстве, машиностроении и судостро-
ении критериев оптимальности [26].

Велароидальные поверхности
В работе [19] отмечается, что параболические, 

гиперболические и синусоидальные велароидальные 
поверхности хорошо известны. Намного меньше 
изучены велароидальные поверхности, впервые пред-
ложенные в статье [2]. Велароидальные поверхности 
в статье [20] было предложено относить в класс по-
верхностей переноса как подкласс. Остановимся на 
поверхностях, указанных в статье [2] более подроб-
но. Авторы рекомендуют задавать их в декартовых 
координатах в явном виде:
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,  – уравнения 
образующих кривых в координатных плоскостях  
y = 0 и x = 0, соответственно. Велароидальная по-
верхность (1) строится на плоском прямоугольном 
плане 2a × 2b. Запишем параметрические уравнения 
поверхности (1) в развернутом виде:
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На рис. 1 построены велароидальные поверхности 
для случаев p = q = s = t = 1 (рис. 1, а); p = 1, q = 2, 
s = 1, t = 1 (рис. 1, б); p = q = s = t = 2 (рис. 1, в);  
p = s = 2, q = t = 1 (рис. 1, г); p = s = 1, q = t = 2  
(рис. 1, д); p = s = 2, q =1, t = 2 (рис. 1, е); p = s = 4, 
q = t = 2 (рис. 1, ж); p = s = 10, q = t = 2 (рис. 1, з).

Таким образом, с помощью одной формулы (2) 
можно смоделировать большое число велароидальных 
поверхностей, приемлемых для конкретных случаев. 
Поверхности, представленные на рис. 1, имеют оди-
наковые габаритные размеры, но разные показатели 
степеней. Различные формы велароидальных поверх-
ностей с одинаковыми габаритами, показанные на 
рис. 1, представлены впервые.

Поверхности вращения с меридианами 
в форме суперэллипсов

Как известно векторное уравнение произвольной 
поверхности вращение имеет вид:

	 r r i j k= ( ) = + + ( )r r r f r, cos sin ,β β β
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где r x y= +[ ]2 2 1 2
 – расстояние от точки поверхности 

до оси вращения, z = f(х) – уравнение меридиана. 
Возьмем в качестве меридиана поверхности вра-

щения суперэллипс, заданный в виде: 

	 z T
x

L

S S

k

k
= −





1 ,  	 (3)

где для выпуклых поверхностей s, k > 1, для вогнутых 
поверхностей s, k < 1. 

Тогда можно записать параметрические уравнения 
семейства поверхностей вращения с меридианами в 
форме суперэллипсов в виде:

	 x x r r y y r r

z z r T r L
k s

= ( ) = = ( ) =

= ( ) = − ( ) 

, cos , , sin ,

,

β β β β

1
1
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где 0 ≤ β ≤ 2π, 0 ≤ r ≤ L; T – стрела подъёма поверх-
ности, L – наибольший радиус параллели в плоско-
сти xOy; β, r – криволинейные координаты поверх-
ности вращения. 

Поверхности, образованные вращением супер- 
эллипса (3) вокруг одной из его осей называются 
суперэллипсоидами вращения. Формула (4) даёт 
возможность построить бесконечно большое коли-
чество поверхностей вращения. Например, на рис. 2 
построены поверхности с T = 10 м, L = 5 м. 

На рис. 2, а принято s = k = 2/3; на рис. 2, б: s = 
k = 1; на рис. 2, в: s = k = 4/3; на рис. 2, г: s = k = 2 
(эллипсоид вращения).

Для построения поверхностей вращения суперэ-
ллипсов была создана специальная компьютерная 
программа на языке MATLAB, с помощью которой 

Рис. 1. Велароидальные поверхности, задаваемые формулами (2)

                      а) p = q = s = t = 1                                        б) p = 1, q = 2, s = 1, t = 1                                         в) p = q = s = t = 2

                    г) p = s = 2, q = t = 1                                              д) p = s = 1, q = t = 2                                        е) p = s = 2, q =1, t = 2

                                               ж) p = s = 4, q = t = 2                                                                           з) p = s = 10, q = t = 2

GEOMETRY & GRAPHICS (2022). Vol. 10. Iss. 4. 26–34



29

ГЕОМЕТРИЯ И ГРАФИКА № 4. 2022

показывается процесс формирования поверхностей 
в мультимедийном режиме с автоматическим изме-
нением степеней s, k в пределах 0 < s, k < ∞.

Алгебраические поверхности с заданным 
каркасом в трех взаимно 
перпендикулярных плоскостях

 Данные поверхности используются, в основном, 
в судостроении для геометрического моделирования 
наружного корпуса судна. Для составления обобщен-
ного уравнения алгебраической поверхности вос-
пользуемся методикой, изложенной в работах [11; 
14]. Имея три плоские кривые, которые совпадают 
с мидель-шпангоутом (в сечении плоскостью yOz), 
главным батоксом (в сечении плоскостью xOz) и 
ватерлинией (в сечении плоскостью xOy), можно 
построить три отличающиеся друг от друга алгебра-
ические поверхности. В указанных работах за эти 
три плоские кривые принимались параболы второго 
и четвертого порядков, эллипсы и другие кривые. 
Для каждого случая задача решалась отдельно. Однако 
задачу можно решить в общем виде, если в качестве 
этих трех кривых принять суперэллипсы с разными 

степенями. Получаемые поверхности можно приме-
нить в различных отраслях народного хозяйства. 
Продемонстрируем это на конкретных примерах. 

 Пусть главные кривые каркаса рассматриваемой 
алгебраической поверхности заданы в виде: 
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где r, t, n, m, s, k > 1, если поверхность выпуклая, или 
r, t, n, m, s, k < 1, если поверхность вогнутая. 
Предположим, что поверхность формируется семей-
ством линий z = const, тогда, используя методику, 
представленную в работах [11; 14], можно получить 

	 x x u v vL u

y y u v W u v

z z u

s k

n m t r
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(5)

                                        а) s = k = 2/3                                                                                                      б) s = k = 1

                                        в) s = k = 4/3                          	                                                                            г) s = k = 2

Рис. 2. Поверхности вращения с меридианами в форме суперэллипсов
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где 0 ≤ u ≤ 1, –1 ≤ v ≤ 1; u, v – безразмерные пара- 
метры, –L ≤ x ≤ L, –W ≤ y ≤ W, 0 ≤ z ≤ T. На рис. 3 
показаны алгебраические поверхности, построенные 
по параметрическим уравнениям (5). На рис. 3, а 
принято L = 10 м, W = 5 м, T = 5 м; на рис. 3, б –  
L = 10 м, W = 7,5 м, T = 10 м; на рис. 3, в – L = 15 м, 
W = 5 м, T = 5 м. На рис. 3 для всех трех поверхностей 
принято: r = t = 2, n = m = 3, s = k = 4.

Формулы (5) описывают огромное количество 
поверхностей благодаря наличию в них постоянных 
произвольных параметров r, t, n, m, s, k, L, W, T, 
которые выбираются согласно проектному заданию. 

В данном разделе впервые предложено исполь-
зовать гидродинамические поверхности судовых 
корпусов в архитектуре и строительстве. До этого 
были предложения использовать алгебраические 
поверхности с заданным каркасом из трех суперэл-
липсов в трех взаимно перпендикулярных плоскостях 
и дополнительной цилиндрической вставкой в су-
достроении [11]. На рис. 3 впервые показано, что, 
выбрав соответствующие габариты поверхности, 
можно получить приемлемую форму архитектурно-
го сооружения на овальном, ромбическом или астро-
идальном плане. 

Влияние формы объекта на его 
напряженно-деформируемое состояние

Знаменитый архитектор и инженер Э. Торроха 
говорит: «Лучшим сооружением является то, надеж-
ность которого обеспечивается главным образом за 
счет его формы, а не за счет прочности его матери-
ала. Последнее достигается просто, тогда как первое, 
наоборот, с большим трудом. В этом заключается 
прелесть поисков и удовлетворение от открытий».  
У Э. Торрохи много последователей. 

Компьютерное моделирование позволяет найти 
оптимальную форму оболочку. Рассмотрим выбор 
формы оболочки на примере оболочек вращения. 
Во-первых, необходимо выбрать критерий опти-
мальности. В работе [26] перечисляются 23 крите-
рия, в том числе максимум отношения объема 
внутреннего пространства оболочки к площади её 
поверхности, минимальный объем внутреннего 
пространства оболочки при заданной площади ее 
поверхности, построение единственной поверхно-
сти вращения с двумя заданными параллелями и 
значениями первой основной квадратичной формы 
поверхности. Эти критерии являются чисто гео-
метрическими. Кроме них, существуют прочност-
ные критерии оптимальности: условие равнопроч-
ности, отсутствие изгибающих моментов и растя-
гивающих нормальных усилий, заданная несущая 
способность составной оболочки при ее минималь-
ном весе, заданная несущая способность при опти-
мальной пологости и др.

 Проблемам оптимизации форм оболочек враще-
ния было посвящено свыше 5000 научных статей и 
100 монографий, опубликованных за период с 1970 
по 1990 г. [30], что говорит о важности проблемы.

 Рассмотрим методику выбора оптимальной обо-
лочки вращения, предложенную в статье [13]. Здесь 
предлагается рассматривать несколько оболочек 
вращения с одинаковыми габаритными размерами, 
но со срединными поверхностями, задаваемыми 
разными параметрическими уравнениями. Причем 

Рис. 3. Алгебраические поверхности с главным каркасом из трех взаимно 
перпендикулярных суперэллипсов

в) L = 15 м, W = 5 м, T = 5 м

а) L = 10 м, W = 5 м, T = 5 м    

б) L = 10 м, W = 7,5 м, T = 10 м
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поверхности должны иметь максимальное совпаде-
ние. Например, были рассмотрены пять оболочек вра-
щения отрицательной гауссовой кривизны (рис. 4), 
пять оболочек вращения, близких по форме к кони-
ческим оболочкам (рис. 5), 

На втором этапе проводится статический расчет 
на линейную нагрузку, распределенную по верхнему 
краю оболочек (рис. 4). Как показал расчет, значения 
внутренних усилий и моментов отличаются значи-
тельно. Статический расчет проводился вариацион-
но-разностным методом.

Также при помощи вариационно-разностного 
метода было определено напряженно-деформиро-
ванное состояние пяти видов оболочек вращения с 
одинаковыми базовыми размерами при их загруже-
нии одинаковой распределенной поверхностной 
нагрузкой (рис. 5).

В статье [13] метод нахождения оптимальной обо-
лочки вращения можно назвать методом нахождения 
оптимальной оболочки вращения по упрощенному 
критерию оптимальности «Минимальные нормаль-
ные напряжения в оболочках вращения с одинако-
выми габаритными размерами, граничными услови-
ями и внешней нагрузкой».

Б. Ник (Nick B.) [28] рассмотрел 5 типов куполов 
(сферические, эллиптические, параболические и 
гиперболические вращения, а также комбинирован-
ные, состоящие из гиперболической поверхности и 

параболической поверхности вращения). Он исполь-
зовал, по сути, вышеуказанный критерий и установил, 
что лучше всего зарекомендовал себя комбиниро-
ванный купол.

Остальные два этапа описанного в [13] критерия 
носят прочностной характер и в данной статье рас-
сматриваться не будут.

Материалы, представленные в настоящем разде-
ле и содержащиеся в статьях [13; 26; 28; 30], пока-
зывают правоту Э. Торрохи и подтверждают, что 
геометрия сооружения-оболочки очень влияет на его 
напряженно-деформированное состояние. В пред-
лагаемом обзорном разделе показывается возможность 
начала процесса выбора оптимальной оболочки по 
геометрическим и прочностным критериям оптими-
зации среди предложенных форм тонких оболочек. 
Дана соответствующая литература.

Заключение
Начавшееся с 1970-х гг. возрождение интереса к 

проектированию и строительству тонкостенных обо-
лочек особенно усилилось в начале XXI в. Это может 
подтвердить международная выставка Connecting 
Minds, Creating the Future в Дубае (ОАЭ), 2021 г., где 
более половины выставочных павильонов выполне-
ны в стиле параметрической архитектуры или архи-
тектуры свободных форм. Нет практически ни одной 
страны, где бы в 2000–2022 гг. не было построено 
нескольких тонкостенных оболочек [27], которые 

Рис. 4. Пять типов поверхностей вращения отрицательной гауссовой 
кривизны [13]:

a) катеноид; б) поверхность вращения параболы четвертого порядка;  
в) поверхность вращения параболы второго порядка; г) однополостный 
гиперболоид вращения; д) глобоид

а) б)

в) г)

д)

Рис. 5. Пять видов поверхностей вращения [13]:
а) псевдосфера; б) конус; в) меридиан — гипербола z = b/x; г) меридиан — 
астроида; д) однополостный гиперболоид вращения

а) б)

в) г)

д)
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становятся знаковыми сооружениями города или 
страны. 

Представленная статья вводит в рассмотрение 
огромное число новых криволинейных поверхностей, 
входящих в классы «Поверхности вращения», 
«Поверхности переноса» и «Алгебраические поверх-

ности с каркасом из трех главных плоских кривых», 
что позволит архитекторам разнообразить их твор-
ческие планы.

Показаны возможные пути нахождения оптималь-
ных форм представленных поверхностей с использо-
ванием некоторых известных критериев оптимизации. 
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