УДК 551.510.535 DOI: 10.12737/szf-101202404 Поступила в редакцию 08.11.2023 Принята к публикации 26.12.2023

ВЛИЯНИЕ КОНЦЕНТРАЦИИ NO НА ОТНОШЕНИЕ *I*557.7/*I*427.8 В ПОЛЯРНЫХ СИЯНИЯХ

EFFECT OF THE NO CONCENTRATION ON THE RATIO *I*_{557.7}/*I*_{427.8} IN AURORAS

В.Е. Иванов

Полярный геофизический институт РАН, Мурманск, Апатиты, Россия, ivanov@pgia.ru

Ж.В. Дашкевич

Полярный геофизический институт РАН, Мурманск, Anamumы, Россия, zhanna@pgia.ru

Аннотация. Методом численного моделирования исследовано влияние концентрации окиси азота на отношение интенсивностей эмиссий 557.7 и 427.8 нм I_{557.7}/I_{427.8} в полярных сияниях, вызванных потоками высыпающихся электронов. Показано, что отношение испытывает сильную зависимость от концентрации NO. По результатам модельных расчетов отношение уменьшается с 7 до 2 при увеличении концентрации NO в максимуме ее высотного профиля $[NO]_{max}$ от 10^7 до $3 \cdot 10^9$ см⁻³, что находится в удовлетворительном согласии с экспериментальными данными. Показано также, что влияние окиси азота на величину отношения осуществляется через канал возбуждения эмиссии 557.7 нм, а именно, диссоциативной рекомбинации иона молекулярного кислорода O₂⁺ + e_{th} путем дезактивации иона в столкновительной реакции с окисью азота $O_2^+ + NO$.

Ключевые слова: окись азота, эмиссии 557.7 и 427.8 нм, отношение интенсивностей, полярные сияния, моделирование, электронные высыпания.

введение

Результаты проведенных ранее исследований свидетельствуют о том, что величина отношения I557.7/I427.8 варьирует в достаточно широком диапазоне от 2 до 10 [Maseide, 1967; Brekke, Henriksen, 1972; Gattinger, Vallance Jones, 1972; Henriksen, 1973; Mende, Eather, 1975; Shepherd, Gerdjikova, 1988; Steel, McEwen, 1990; Дашкевич и др., 2006]. Возможные причины наблюдаемой вариабельности отношения рассматривались в работах [Shepherd, Gerdjikova, 1988; Shepherd, Shepherd, 1995; Gattinger et al., 1996], в которых анализировалось влияние на возбуждение ¹S-состояния атомарного кислорода нейтральной атмосферы двух процессов, а именно: вариаций параметров энергетического спектра потока высыпающихся электронов и вариаций концентрации атомарного кислорода. При этом в моделях, описывающих каналы возбуждения ¹S-состояния атомарного кислорода, было включено только два основных источника: прямой электронный удар V.E. Ivanov

Polar Geophysical Institute RAS, Murmansk, Apatity, Russia, ivanov@pgia.ru

Zh.V. Dashkevich Polar Geophysical Institute RAS, Murmansk, Apatity, Russia, zhanna@pgia.ru

Abstract. We have examined the effect of the nitrogen oxide concentration on the ratio between $\lambda 557.7$ nm and $\lambda 427.8$ nm emission intensities in auroras caused by precipitating electron fluxes, using the numerical simulation method. The ratio $I_{557.7}/I_{427.8}$ has been shown to strongly depend on the NO concentration: the ratio decreases from 7 to 2 with increasing NO maximum concentration at the height profile from 10^7 to $3 \cdot 10^9$. This fact is in satisfactory agreement with experimental data. The effect of nitric oxide on the ratio has been demonstrated to occur through the excitation channel of the emission $\lambda 557.7$ nm, namely, the dissociative recombination of the molecular oxygen ion $O_2^+ + e_{th}$ due to the ion deactivation by collision reaction with nitric oxide $O_2^+ + NO$.

Keywords: nitric oxide, 557.7 nm and 427.8 nm emissions, intensity ratio, aurora, modeling, electron precipitation.

 $O + e^* \rightarrow O({}^{1}S) + e$ и столкновительная реакция $N_2(A^3 \sum_{u}^{+}) + O \rightarrow O({}^{1}S) + N_2(X^1 \sum_{g}^{+})$. В результате в [Shepherd, Gerdjikova, 1988; Shepherd, Shepherd, 1995] было показано, что наблюдаемый диапазон изменения $I_{557.7}/I_{427.8}$ не может быть вызван вариациями энергетического спектра потока высыпающихся электронов, но может быть объяснен вариациями концентрации атомарного кислорода [O]. В этом случае концентрация [O] должна варьировать в диапазоне (0.6÷2)MSIS[O]. В [Gattinger et al., 1996] были получены аналогичные выводы и определен интервал изменения [O], составляющий (0.5÷1)MSIS[O]. Однако, подобные вариации концентрации концентрации кислорода в неосвещенной солнцем ионосфере маловероятны в процессе электронных высыпаний.

В [Shepherd, Gerdjikova, 1988; Shepherd, Shepherd, 1995; Gattinger et al., 1996] не рассматривалась реакция диссоциативной рекомбинации $O_2^+ + e_{th} \rightarrow O(^1S) + O(^1D)$ как один из возможных каналов возбуждения ¹S-состояния атомарного кислорода. Это было связано с тем, что по полученным в [Gattinger et al., 1985, 1996] оценкам вклад реакции диссоциативной рекомбинации в возбуждение ¹S-состояния атомарного кислорода составляет менее 10 %. Однако следует отметить, что величина вклада диссоциативной рекомбинации иона О2⁺ в значительной степени зависит от концентрации окиси азота, так как NO является основным гасителем иона молекулярного кислорода в реакции $O_2^+ + NO \rightarrow NO^+ + O_2$. В работах [Gattinger et al., 1985, 1996] концентрация NO задавалась равной 4.10^8 см⁻³ и 10^9 см⁻³ в максимуме ее высотного профиля, что и привело к оценке вклада реакции диссоциативной рекомбинации в возбуждение 'S атомарного кислорода менее 10 %. Непосредственные оценки концентрации окиси азота в полярных сияниях демонстрируют достаточно широкий диапазон изменения концентрации NO в максимуме ее высотного профиля [NO]_{max} [Swider, Narcisi, 1977; Sharp, 1978; Siskind et al., 1989; Дашкевич, Иванов, 2019]. На рис. 1 приведены высотные профили [NO], полученные на основе ракетных и наземных наблюдений в области полярных сияний.

Видно, что [NO]_{тах} лежит в достаточно широком интервале от $3 \cdot 10^7$ до $3 \cdot 10^9$ см⁻³. В [Deans, Shepherd, 1978] на основе масс-спектроскопических измерений отмечалось, что [NO]_{тах} в области полярных сияний не превышает 10^8 см⁻³. С уменьшением [NO]_{тах} менее 10^8 см⁻³ эффект гашения иона молекулярного кислорода окисью азота также будет уменьшаться. Поэтому можно ожидать, что вклад реакции диссоциативной рекомбинации в возбуждение ¹S-состояния атомарного кислорода будет возрастать и превысит оценку 10 %, что непосредственно скажется на величине $I_{557.7}/I_{427.8}$.

Целью данной работы является исследование степени влияния [NO]_{max} на величину $I_{557.7}/I_{427.8}$ эмиссий, наблюдаемых в полярных сияниях. Ключевым моментом в данной работе является исследование влияния [NO]_{max} на эффективность реакции диссоциативной рекомбинации $O_2^+ + e_{th} \rightarrow O(^1S) + O(^1D)$, которая представляет собой один из значимых каналов возбуждения ¹S-состояния атомарного кислорода.

1. ВЛИЯНИЕ ОКИСИ АЗОТА НА ВОЗБУЖДЕНИЕ ЭМИССИИ λ557.7 нм

Эмиссия λ 557.7 нм является следствием возбуждения ¹S-состояния атомарного кислорода с последующим переходом на ¹D-уровень. В полярных сияниях возбуждение атомов O(¹S) происходит как за счет прямого электронного удара, так и за счет процессов столкновительного взаимодействия между компонентами атмосферы. В настоящее время в задачах, связанных с расчетом $I_{557.7}$, рассматривается шесть каналов возбуждения ¹S-состояния атомарного кислорода:

$$O + e^* \rightarrow O(^1S) + e,$$
 (1)

$$N_{2}\left(A^{3}\sum_{u}^{+}\right)+O \rightarrow O\left({}^{1}S\right)+N_{2}\left(X^{1}\sum_{g}^{+}\right), \qquad (2)$$

Рис. 1. Оценки высотных профилей концентрации NO, полученные по данным ракетных и наземных наблюдений

$$O_2^+ + e_{th} \rightarrow O(^1S) + O(^1D), \qquad (3)$$

$$O_{2}^{+} + N({}^{4}S) \rightarrow O({}^{1}S) + NO^{+}, \qquad (4)$$

$$N(^{2}P) + O_{2} \rightarrow O(^{1}S, ^{1}D, ^{3}P) + NO,$$
(5)

$$\mathbf{N}^{+} + \mathbf{O}_{2} \to \mathbf{O}\left(^{1}\mathbf{S}, ^{1}\mathbf{D}\right) + \mathbf{NO}^{+}, \tag{6}$$

где е^{*} — высыпающийся энергичный электрон; е_{th} — тепловой электрон ионосферной плазмы.

Рассмотрим, каким образом І557.7 может зависеть от [NO]. Одним из каналов возбуждения ¹S-состояния атомарного кислорода является реакция диссоциативной рекомбинации иона молекулярного азота (3). Эффективность данного канала в первую очередь зависит от концентрации ионов молекулярного кислорода O_2^+ , рожденных в области электрон-ных высыпаний, которая зависит от эффективности реакций дезактивации O_2^+ с нечетным азотом $N(^4S)$, N(²D] и NO. Константы скоростей реакций $O_{2}^{+} + N({}^{4}S), O_{2}^{+} + N({}^{2}D)$ и $O_{2}^{+} + NO$ сравнимы между собой [Fensenfeld, 1977; Goldan et al., 1966], тогда как концентрации $N(^4S)$ и $N(^2D)$ в полярных сияниях на порядки меньше концентраций NO. Поэтому можно считать, что основным процессом дезактивации иона O_2^+ является реакция $O_2^+ + NO$. Возможным каналом, влияющим на І557.7, является также реакция дезактивации ¹S-состояния атомарного кислорода окисью азота O(¹S)+NO. Однако влияние данной реакции на I557.7 незначительно из-за низкой скорости ее протекания [Black et al., 1969].

Вертикальные профили объемной интенсивности излучения эмиссии с длиной волны λ557.7 определяются следующим образом:

$$\eta_{557.7}(h) = A_{1_{S \to 1_D}} \Big[O(^{1}S), h \Big],$$

где $\eta_{557.7}$ — объемная интенсивность излучения эмиссии с длиной волны λ 557.7 нм; $A_{1_{S\rightarrow^{1}D}}$ — коэффициент Эйнштейна для излучательного перехода $O({}^{1}S\rightarrow^{1}D)$, испускающего эмиссию λ 557.7 нм; $[O({}^{1}S)]$ — концентрация атомарного кислорода в ${}^{1}S$ -состоянии; h — высота. Принимая во внимание механизмы возбуждения и дезактивации ¹S-состояния атомарного кислорода [Дашкевич и др., 2017] уравнение баланса для расчета $[O(^{1}S), h]$ будет выглядеть следующим образом:

$$\frac{d}{dt} \Big[\mathbf{O} \Big({}^{1}\mathbf{S} \Big), h \Big] = Q_{\mathbf{I}_{\mathbf{S}}}(h) + \sum_{ij} k_{ij} \big[\mathbf{N}_{i}, h \big] \Big[\mathbf{N}_{j}, h \Big] - \Big(A_{\mathbf{I}_{\mathbf{S} \rightarrow {}^{1}\mathbf{D}}} \Big) \Big[\mathbf{O} \Big({}^{1}\mathbf{S} \Big), h \Big] - \sum_{i} k_{i} \big[\mathbf{N}_{i}, h \big] \Big[\mathbf{O} \Big({}^{1}\mathbf{S} \Big), h \Big],$$

где $Q_{1_{S}}(h)$ — скорость возбуждения ¹S-состояния атомарного кислорода электронным ударом на высоте h; второй член — возбуждение ¹S-состояния в результате столкновительных взаимодействий частиц сорта *i* с частицами сорта *j* (1)–(6); третий член — дезактивация ¹S-состояния за счет радиационного перехода ¹S \rightarrow ¹D; четвертый член — дезактивация ¹S-состояния в результате столкновительных взаимодействий; $k_{i,j}$ — константы скоростей реакций; $A_{1_{S}\rightarrow 1_{D}}$ — коэффициент Эйнштейна для перехода

¹S→¹D. Высотные профили скорости образования ¹S-состояния за счет электронного удара (1) рассчитывались с использованием функции диссипации энергии и «энергетических цен», полученных на основе моделирования процесса переноса электронов в атмосферных газах в соответствии с формулами

$$Q_{1_{S}}(h) = P_{O}(h)\rho(h)\frac{1}{\varepsilon_{1_{S}}}\Phi(F(E),h),$$

$$\Phi(F(E),h) = \int_{E} \frac{EF(E)}{R(E)}\lambda\left(E,\frac{z(h)}{R(E)}dE\right),$$

где $\Phi(F(E), h)$ — полная энергия, выделившаяся на высоте h; $P_0(h)$ — относительная доля энергии, пошедшая на возбуждение атомарного кислорода на высоте h; $\rho(h)$ — плотность нейтральной атмосферы; ε_{1_S} — энергетическая цена возбуждения ¹S-состояния атома кислорода; z(h) — масса, проходимая электроном до высоты h; R(E) — интегральная длина пробега; F(E) — энергетический спектр потока

высыпающихся электронов; $\lambda\left(E, \frac{z(h)}{R(E)}\right)$ — без-

размерная функция диссипации энергии [Sergienko, Ivanov, 1993].

В столбе полярного сияния

$$I_{557.7} = \int_{h_2}^{h_1} \eta_{557.7}(h) dh,$$

где h_1 и h_2 — высоты верхней и нижней границы полярного сияния.

Численное моделирование процесса возбуждения ¹S-состояния атомарного кислорода, обусловленного потоком высыпающихся электронов, проводилось в рамках нестационарной модели возмущенной полярной ионосферы, детально описанной в [Дашкевич и др., 2017]. Модель включает в себя 56 физико-химических реакций, описывающих перераспределение энергии, выделившейся в столбе полярного сияния в процессе высыпания авроральных электронов. В качестве нейтральной модели атмосферы использовалась MSIS-90. В [Дашкевич, Иванов, 2022] было показано, что $I_{557.7}/I_{427.8}$ слабо зависит от формы энергетического спектра потока электронов, характерных для авроральных высыпаний, но показывает сильную зависимость от средней энергии потока. Поэтому в данной работе энергетический спектр потока высыпающихся электронов задавался в виде максвеловского распределения

$$N(E) = N_0 E \exp(-E/E_0)/E_0^2$$
,

где N_0 и E_0 — начальный поток частиц и характеристическая энергия соответственно. Средняя энергия потока $E_{\rm cp}$, имеющего максвеловское распределение, соответствует величине $2E_0$. Распределение по питчуглам задавалось изотропным в нижней полусфере.

Исследуем влияние [NO] на величины относительных вкладов реакций (1)–(6) в возбуждение эмиссии λ 557.7 нм, принимая суммарную $I_{557.7}$ за единицу. В проведенных расчетах средняя энергия потока высыпающихся электронов $E_{\rm cp}$ варьировала в диапазоне 1–20 кэВ, который является типичным для авроральных электронов, возбуждающих полярные сияния [Vorobjev et al., 2013]. Величина [NO]_{max} варьировала в диапазоне 10^7 –3· 10^9 см⁻³, что соответствует наблюдаемым в полярных сияниях значениям. На рис. 2 показаны результаты расчетов зависимостей относительных вкладов реакций (1)–(6) от [NO]_{max} для электронных потоков со средней энергией 1, 3, 7 и 15 кэВ.

Видно, что относительные вклады реакций (1), (2), (5) и (6) слабо зависят от $[NO]_{max}$ во всем рассмотренном диапазоне средних энергий потока высыпающихся электронов. Сильную зависимость показывают только вклады реакций (3) и (4): $O_2^+ + e_{th}$ и $O_2^+ + N(^4S)$. Однако абсолютная величина относительного вклада реакции $O_2^+ + N(^4S)$ незначительна и составляет менее 1 % во всем диапазоне средних энергий электронного потока. Поэтому более детально рассмотрим зависимость величины относительного вклада реакции $O_2^+ + e_{th}$ от $[NO]_{max}$. Рассчитанные зависимости вклада реакции $O_2^+ + e_{th}$ в возбуждение ¹S-состояния атомарного кислорода показаны на рис. 3 для диапазона средних энергий электронного потока от 1 до 20 кэВ.

Видно, что при [NO]_{max}> $2\cdot10^8$ см⁻³ в интервале E_{cp} от 1 до 20 кэВ усредненный вклад реакции диссоциативной рекомбинации O_2^+ в возбуждение эмиссии λ 557.7 нм составляет менее 10 % и продолжает уменьшаться с ростом содержания окиси азота в области полярного сияния, что согласуется с оценками, полученными в [Gattinger et al., 1985, 1996]. Однако, при уменьшении [NO]_{max} от $2\cdot10^8$ см⁻³ относительный вклад реакции диссоциативной рекомбинации начинает возрастать. При [NO]_{max} = 10^7 см⁻³ относительный вклад реакции $O_2^+ + e_{th}$ лежит в интервале от 20 до 41 % для диапазона E_{cp} от 1 до 20 кэВ.

Рис. 2. Зависимость относительных вкладов шести каналов возбуждения ¹S-состояния атомарного кислорода от [NO]_{тах} для средних энергий электронного потока 1, 3, 7 и 15 кэВ

Рис. 3. Зависимость относительного вклада реакции диссоциативной рекомбинации O_2^+ в возбуждение ¹S-состояния атомарного кислорода от [NO]_{тах} для средних энергий электронного потока 1, 3, 7, 15 и 20 кэВ

Подобный характер поведения этой реакции как источника возбуждения ¹S-состояния атомарного кислорода с неизбежностью приведет к вариациям *I*_{557.7} в зависимости от [NO] в полярном сиянии.

2. ОТНОШЕНИЕ ИНТЕНСИВНОСТЕЙ *I*557.7/*I*427.8

Исследуем влияние [NO] на $I_{557.7}/I_{427.8}$. Эмиссия λ 427.8 нм является одной из интенсивных полос системы 1NG N_2^+ , возникающая вследствие перехода

$$N_{2}^{+}\left(B^{2}\sum_{u}^{+}, \nu'=0 \rightarrow X^{2}\sum_{g}^{+}, \nu''=1\right),$$

где v — колебательное квантовое число. Объемная интенсивность излучения эмиссии λ 427.8 нм на высоте *h* определяется как

$$\eta_{427.8}(h) = A_{B^2, v'=0 \to X^2, v'=1} \left[N_2^+ \left(B^2 \sum_{u}^+, v'=0 \right) h \right],$$

где $\left[N_2^+ \left(B^2 \sum_{u}^+, v'=0 \right), h \right]$ — концентрация иона
 N_2^+ в состоянии $B^2 \sum_{u}^+, v'=0; A_{B^2, v'=0 \to X^2, v'=1}$ —
коэффициент Эйнштейна для излучательного пере-
хода $N_2^+ \left(B^2 \sum_{u}^+, v'=0 \to X^2 \sum_{g}^+, v''=1 \right),$ испускаю-
щего эмиссию $\lambda 427.8$ нм.

Принимая во внимание малое время жизни $B^2 \sum_{u}^{+}$ терма (~10⁻⁷ с), столкновительной дезактивацией этого состояния можно пренебречь, считая, что он целиком возбуждается только электронным ударом и гасится благодаря радиационным переходам на терм $X^2 \sum_{g}^{+}$. В этом случае концентрация иона молекулярного азота N_2^+ в состоянии $B^2 \sum_{u}^{+}$, v'=0 в условиях фотохимического равновесия будет определяться простым стационарным уравнением баланса

$$0 = Q_{B^{2}, \nu'=0}(h) - -\sum_{\nu'} A_{B^{2}, \nu'=0 \to X^{2}, \nu'} \left[N_{2}^{+} \left(B^{2} \sum_{u}^{+}, \nu'=0 \right), h \right]$$

где $Q_{B^2, \nu'=0}(h)$ — скорость возбуждения состояния $B^2 \sum_{u}^{+}, \nu' = 0$ иона N_2^+ электронным ударом на высоте $h, A_{B^2, \nu'=0 \to X^2, \nu'}$ — вероятность радиационного перехода $\nu'=0$ колебательного уровня $B^2 \sum_{u}^{+}$ состояния ν'' в основное состояние иона молекулярного азота $X^2 \sum_{\sigma}^{+}$.

Тогда

$$\eta_{427.8}(h) = \frac{A_{B^2, v'=0 \to X^2, v'=0}}{\sum_{v'} A_{B^2, v'=0 \to X^2, v''}} Q_{v'=0}(h)$$

Высотные профили скорости образования состояния $B^2 \sum_{u}^{+}, v' = 0$ иона молекулярного азота $Q_{B^2, v'=0}(h)$ рассчитывались так же, как высотные профили скорости образования ¹S-состояния атомарного кислорода с использованием функции диссипации энергии и энергетических цен:

$$Q_{B^{2}, v'=0}(h) = P_{N_{2}}(h)\rho(h)\frac{q_{B^{2}, v'=0}}{\varepsilon_{B^{2}}}\Phi(F(E), h),$$

где $P_{N_2}(h)$ — относительная доля энергии на возбуждение молекулы азота на высоте h; $\rho(h)$ — плотность нейтральной атмосферы на высоте h; $q_{B^2, v'=0}$ фактор Франка—Кондона, определяющий относительную заселенность v'=0 колебательного уровня $B^2 \sum_{u}^{+}$ состояния иона N_2^+ ; ε_{B^2} — энергетическая цена возбуждения состояния $B^2 \sum_{u}^{+}$ иона N_2^+ ; $\Phi(F(E), h)$ — полная энергия, выделившаяся на высоте h; F(E) — энергетический спектр потока высыпающихся электронов.

Интенсивность эмиссии λ427.8 нм в столбе полярного сияния

$$I_{427.8} = \int_{h_2}^{h_1} \eta_{427.8}(h) dh.$$

Расчеты $I_{557.7}/I_{427.8}$ проводились для средних энергий E_{cp} потока высыпающихся электронов в интервале от 1 до 20 кэВ. Величина [NO]_{max} варьировала от 10⁷ до 4·10⁹ см⁻³. Рассчитанные зависимости $I_{557.7}/I_{427.8}$ от [NO]_{max} показаны на рис. 4.

Видно, что $I_{557.7}/I_{427.8}$ испытывает сильную зависимость от [NO]_{max} во всем рассмотренном диапазоне средних энергий потока высыпающихся электронов. С увеличением [NO]_{max} от 10⁷ до 3 ·10⁹ см⁻³ $I_{557.7}/I_{427.8}$ уменьшается от ~7 до ~2. Полученные значения $I_{557.7}/I_{427.8}$ находятся в удовлетворительном согласии с величинами, наблюдаемыми в полярных сияниях. Влияние средней энергии потока высыпающихся электронов на $I_{557.7}/I_{427.8}$ гораздо слабее, чем влияние [NO]_{max}. В рассмотренном диапазоне средних энергий высыпающихся электронов 1–20 кэВ величина $I_{557.7}/I_{427.8}$ при [NO]_{max} =10⁷ см⁻³ лежит в диапазоне 6–7, при [NO]_{max}=3·10⁹ см⁻³ — в диапазоне 2–3. Данный результат находится в согласии с результатами, полученными в [Shepherd, Gerdjikova, 1988; Shepherd, Shepherd, 1995].

В [Sharp et al., 1979] были приведены результаты одновременных измерений $I_{391.4}$, $I_{557.7}$ и [NO] в области полярного сияния, $I_{391.4}$ была пересчитана в $I_{427.8}$. Полученное отношение $I_{557.7}/I_{427.8}$ и измеренные [NO] показаны на рис. 4. Видно, что результаты модельных расчетов находятся в согласии с экспериментальными данными.

Таким образом, наблюдаемый в полярных сияниях диапазон изменения $I_{557.7}/I_{427.8}$ может быть обусловлен не вариациями концентрации атомарного кислорода нейтральной атмосферы, как было показано

Рис. 4. Зависимость $I_{557,7}/I_{427.8}$ от [NO]_{тах} для средних энергий 1, 3, 7, 15 и 20 кэВ. Сплошной кружок и ромб — экспериментальные данные работы [Sharp et al., 1979]

в [Shepherd, Gerdjikova, 1988; Shepherd, Shepherd, 1995; Gattinger et al., 1996], а вариациями [NO] в области полярных сияний.

выводы

В данной работе исследовано влияние концентрации окиси азота NO на отношение интенсивностей $I_{557,7}/I_{427,8}$ в полярных сияниях, вызванных потоками авроральных электронов. Показано, что $I_{557,7}/I_{427,8}$ испытывает сильную зависимость от [NO]_{max} во всем диапазоне средних энергий, типичных для потоков высыпающихся электронов. Отношение уменьшается с увеличением [NO]_{max} от 10⁷ до $3 \cdot 10^9$ см⁻³. При этом изменение $I_{557,7}/I_{427,8}$ лежит в интервале от 7 до 2, что находится в удовлетворительном согласии с диапазоном изменения отношения, наблюдаемым в полярных сияниях.

Показано, что причиной вариабельности $I_{557.7}/I_{427.8}$ является дезактивация иона молекулярного кислорода окисью азота $O_2^+ + NO$, которая приводит к изменению вклада реакции диссоциативной рекомбинации $O_2^+ + e_{th} \rightarrow O(^1S) + O(^1D)$ в возбуждение 1S -состояния атомарного кислорода.

СПИСОК ЛИТЕРАТУРЫ

Дашкевич Ж.В., Иванов В.Е. Оценка содержания окиси азота в полярных сияниях по данным наземных фотометрических наблюдений. *Солнечно-земная физика*. 2019. Т. 5, № 1. С. 3–10. DOI: 10.12737/szf-51201908.

Дашкевич Ж.В., Иванов В.Е. Диагностика интенсивностей излучения и электронной концентрации в полярных сияниях по данным эмпирических моделей высыпаний. *Солнечно-земная физика*. 2022. Т. 8, № 2. С. 61–66. DOI: 10.12737/szf-82202208.

Дашкевич Ж.В., Зверев В.Л., Иванов В.Е. Отношения интенсивностей эмиссий *I*_{557.7}/*I*_{427.8} в полярных сияниях. *Геомагнетизм и аэрономия.* 2006. Т. 46, № 3.С. 385–389.

Дашкевич Ж.В., Иванов В.Е., Сергиенко Т.И., Козелов Б.В. Физико-химическая модель авроральной ионосферы. Космические исследования. 2017. Т. 55, № 2. С. 94–106. DOI: 10.7868/S0023420617020029.

Black G., Slander T.G., St. John G.A., Young R.A. Vacuum-ultraviolet photolysis of N₂O. IV. Deactivation of N(²D). J. Chemical Phys. 1969. Vol. 51, no. 1. P. 116–121. DOI: 10.1063/1.1671694.

Brekke A., Henriksen K. The intensity ratio I(557.7)/I(427.8) and the effective life time of O(¹S) atoms in pulsating aurora. *Planet. Space Sci.* 1972. Vol. 20, no. 1. P. 53–60. DOI: 10.1016/0032-0633(72)90140-7.

Deans A.J., Shepherd G.G. Rocket measurements of oxygen and nitrogen emissions un the aurora. *Planet. Space Sci.* 1978. Vol. 26, no. 4. P. 319–333. DOI: 10.1016/0032-0633(78)90115-0.

Fensenfeld F.C. The reaction of O_2^+ with atomic nitrogen and $NO^+ \cdot H_2O$ and NO_2^+ with atomic oxygen. *Planet. Space Sci.* 1977. Vol. 25, no. 2. P. 195–196.

Gattinger R.L., Vallance Jones A. The intensity ratios of auroral emissions features. *Ann. Geophys.* 1972. Vol. 28. P. 91–97.

Gattinger R.L., Harris F.R., Vallance Jones A. The height, spectrum and mechanism of type-B red aurora and its bearing on the excitation of O(¹S) in aurora. *Planet. Space Sci.* 1985. Vol. 33, no. 2. P. 207–221. DOI: 10.1016/0032-0633(85)90131-X.

Gattinger R.L., Llewellyn E.J., Vallance Jones A. On *I*(5577A) and *I*(7620A) auroral emissions and atomic oxygen densities. *Ann. Geophys.* 1996. Vol. 14, no.7. P. 687–698. DOI: 10.1007/s00585-996-0687-1.

Goldan P.D., Schmeltekopf A.L., Fehsenfeld F.C., et al. Thermal energy ion-neutral reaction rates. II. Some reactions of ionospheric interest. *J. Chemical Phys.* 1966. Vol. 44, no. 11. P. 4095–4103. DOI: 10.1063/1.1726588.

Henriksen K. Photometric investigation of the 4278 A and 5577A emission in aurora. *J. Atmos. Terr. Phys.* 1973. Vol. 35, no. 7. P. 1341–1350. DOI: 10.1016/0021-9169(73)90167-0.

Maseide K. Rocket measurements of the volume emission profiles for auroral glow. *Planet. Space Sci.* 1967. Vol. 15, no. 5. P. 899–905. DOI: 10.1016/0032-0633(67)90124-9.

Mende S.B., Eather R.A. Spectroscopic determination of the characteristics of precipitating auroral particles. *J. Geophys. Res.* 1975. Vol. 80. P. 3211–3216. DOI: 10.1029/JA080i022p03211.

Sergienko N.I., Ivanov V.E. A new approach to calculate the excitation of atmospheric gases by auroral electron impact. *Ann. Geophys.* 1993. Vol. 11, no. 8. P. 717–727.

Sharp W.E. NO₂ continuum in aurora. *J. Geophys. Res.* 1978. Vol. 83. P. 4373–4376. DOI: 10.1029/JA083iA09p04373.

Sharp W.E., Rees M.H., Stewart A.I. Coordinated rocket and satellite measurements of an auroral event 2. The rocket observations and analysis. *J. Geophys. Res.* 1979. Vol. 84, no. A5. P. 1977–1985. DOI: 10.1029/JA084iA05p01977.

Shepherd G.G., Gerdjikova M.G. Thermospheric atomic oxygen concentrations inferred from the auroral *I*(5577)/*I*(4278) emission rate ratio. *Planet. Space Sci.* 1988. Vol. 36, no. 9. P. 893–895. DOI: 10.1016/0032-0633(88)90096-7.

Shepherd M.G., Shepherd G.G. On the *I*(557.7 nm)/*I*(427.8 nm) emission rate in aurora. *J. Atmos. Terr. Phys.* 1995. Vol. 57, no. 8. P. 933–943. DOI: 10.1016/0021-9169(94)00065-V.

Siskind D.E., Barth C.A., Evans D.S., Roble R.G. The response of thermospheric nitric oxide to an auroral storm 2. Auroral latitudes. *J. Geophys. Res.* 1989. Vol. 94, no. A12. P. 16899–16911. DOI: 10.1029/JA094iA12p16899.

Steel D.P., McEwen D.J. Electron auroral excitation efficiencies and intensity rations. *J. Geophys. Res.* 1990. Vol. 95, no. A7. P. 10321–10336. DOI: 10.1029/JA095iA07p10321.

Swider W., Narcisi R.S. Auroral E-region: Ion composition and nitric oxide. *Planet. Space Sci.* 1977. Vol. 25, no. 2. P. 103–116. DOI: 10.1016/0032-0633(77)90014-9.

Vorobjev V.G., Yagodkina O.I., KatkalovYu.V. Auroral precipitation model and its applications to ionospheric and magnetospheric studies. *J. Atmos. Solar-Terr. Phys.* 2013. Vol. 102. P. 157–171. DOI: 10.1016/j.jastp.2013.05.007.

Как цитировать эту статью:

Иванов В.Е., Дашкевич Ж.В. Влияние концентрации NO на отношение *I*_{557.7}/*I*_{427.8} в полярных сияниях. *Солнечно-земная физика*. 2024. Т. 10, № 1. С. 31–36. DOI: 10.12737/szf-101202404.