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1. ВВЕДЕНИЕ

Прогнозирование временных рядов — это про-
цесс определения будущих значений временного 
ряда на основе прошлых и текущих данных. Оно 
заключается в анализе исторических данных, выяв-
лении закономерностей и использовании математи-
ческих моделей для предсказания будущих значений 
временного ряда. 

Временной ряд представляет собой последова-
тельность упорядоченных во времени числовых по-
казателей, характеризующих уровень состояния и 
изменения изучаемого явления. Прогнозирование 
временных рядов используется в экономике, бизнесе 
и других сферах для предсказания будущих тенден-
ций и принятия обоснованных решений.

Цель научной статьи — провести сравнительный 
анализ моделей прогноза для исследования стоимости 
курса акций и определить наиболее подходящую мо-
дель для прогнозирования динамики рынка акций. 

Задачи научной статьи: 
• провести обзор регрессионных моделей прогноза

стоимости акций, используемых в машинном об-
учении;

• охарактеризовать рынок акций;
• выбрать датасет, проанализировать его, выпол-

нить предварительную обработку;
• построить прогнозы с помощью моделей;
• сравнить результаты;
• оценить перспективы развития рынка акций;

Актуальность научной статьи обусловлена слож-
ностью прогнозирования и оценки динамики рынка 
акций. 

Распространённые модели для прогнозирования 
цен на акции включают линейную регрессию и слу-
чайный лес. 

Линейная регрессия определяет зависимость 
между целевой переменной (ценой акции) и одним 
или несколькими факторами (индексами, финансо-
выми показателями и т. д.). Она широко использу-
ется в финансовых моделях. 

Случайный лес — это метод, объединяющий не-
сколько деревьев решений в единую модель. Каждое 
дерево обучается на подмножестве данных и выборе 
случайного подмножества факторов. Конечный про-
гноз определяется усреднением прогнозов всех де-
ревьев. 
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Аннотация
В статье представлен сравнительный анализ моделей машинного обучения 
для прогнозирования курса акций. Охарактеризован процесс алгоритми-
ческого трейдинга. Рассмотрено использование искусственного интеллекта 
на фондовом рынке, преимущества и недостатки его применения. Выбраны 
модели машинного обучения: линейная регрессия и случайный лес, дана 
их характеристика. Определены метрики для оценки качества прогнозов и 
представлено их математическое описание. Выполнено обучение и тести-
рование моделей, получены прогнозируемые значения, найдены необхо-
димые метрики. Все расчеты, анализ, машинное обучение выполнены в 
среде программирования Python с подключение библиотек Pandas, Numpy, 
Matplotlib, Sklearn. В результате модель случайного леса оказалась наи-
более надежной с учетом высокой точности и минимизации ошибок, для 
модели линейной регрессии среднеквадратическая ошибка и средняя аб-
солютная ошибка больше почти на 90%. 
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The article presents a comparative analysis of machine learning models for 
stock price forecasting. The process of algorithmic trading is characterized. 
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advantages of its application are considered. The models of the machine learn-
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В данном исследовании сравниваются модели 
линейной регрессии и случайного леса. Критериями 
для сравнения являются значения ошибок прогноза. 

2. МЕТОДЫ ИССЛЕДОВАНИЯ

Для проведения исследования в области опреде-
ления наиболее подходящей модели для прогнози-
рования стоимости акций использованы методы 
систематизации данных (системный метод), сравни-
тельного анализа на основе полученной точности и 
достоверности результатов, применения математи-
ческих моделей для предсказания будущих значений 
временного ряда, анализ исторических данных для 
выявления закономерностей и зависимостей, а также 
использование машинного обучения.

3. РЕЗУЛЬТАТЫ

Алгоритмическая торговля или алгоритмический 
трейдинг — процесс совершения торговых операций 
на финансовых рынках по заданному алгоритму с 
использованием специализированных компьютер-
ных систем — торговых роботов [4, с. 18]. 

В последние несколько лет динамику фондового 
рынка можно назвать нацеленную на цифровизацию 
процесса совершения сделок с ценными бумагами, 
при этом инвесторам приходится «отрабатывать» все 
более мелкие рыночные колебания, использовать в 
своей работе все более короткие временные интер-
валы (в том числе внутридневные), т.е. следует пе-
реходить от пассивного инвестирования к активному 
трейдингу. 

Системная торговля предполагает осуществление 
операций в соответствии с некоторым набором пра-
вил для входа и выхода из позиции. Если правила 
торговой системы четко сформулированы, то в 90% 
случаев такую систему можно автоматизировать. До-
стоинства и недостатки применения торгового ро-
бота представлены ниже (табл. 1). 

Таблица 1

Достоинства и недостатки применения торгового робота

Достоинства Недостатки

Экономия времени Зависимость от алгоритма

Снижение эмоционального вли­
яния

Невозможность использования 
фундаментального анализа

Помощь новичкам Риск технических сбоев

Высокая скорость и непрерыв­
ность работы

Необходимость системного 
контроля

Источник: составлено авторами на основе источников  
[4; 6].

По данным Московской биржи, в настоящее 
время, алгоритмический торговый оборот на фон-
довом рынке превышает 50%. В то же время на сроч-

ном рынке Московской биржи доля роботизирован-
ных операций в объеме торгов составляет порядка 
60% (из них высокочастотных — около 45%). На 
валютной секции наблюдается схожая ситуация: HFT 
обеспечивали порядка 65% от объема торгов. Также 
стоит отметить, что многие российские банки — 
Сбербанк, ВТБ, Альфа-Банк, Росбанк и др. — пре-
доставляют услугу покупки ценных бумаг и имеют 
интеграцию с роботами-советниками. 

Алгоритмическая торговля стала неотъемлемой 
частью современного финансового рынка, обеспе-
чивая высокую скорость и эффективность проведе-
ния операций. Она позволяет институциональным 
инвесторам и крупным клиентам брокеров совер-
шать сделки большого объёма без риска потерь. Ал-
горитмические стратегии, такие как TWAP (Time 
Weighted Average Price), VWAP (Volume Weighted Average 
Price) и Iceberg, помогают равномерно исполнять 
заявки и минимизировать влияние на рынок.

Машинное обучение — это процесс, когда ком-
пьютеры, анализируя данные, учатся самостоятельно 
формировать прогнозы и выполнять задачи, обычно 
требующие человеческого участия. 

На фондовых рынках машинное обучение ис-
пользуется для анализа временных рядов, прогнози-
рования цен на акции, оптимизации управления 
портфелем и обнаружения аномалий [6, с. 8]. 

Основные методы машинного обучения, приме-
няемые на фондовых рынках, следующие: 
1) прогнозирование стоимости ценных бумаг: алго-

ритмы анализируют исторические данные ценных
бумаг и строят модели для предсказания будущих 
цен;

2) портфельное управление: алгоритмы помогают
инвесторам выбирать комбинации активов для
максимизации ожидаемой доходности при задан-
ном уровне риска;

3) обнаружение аномалий: машинное обучение по-
могает обнаруживать аномалии в финансовых
данных, такие как мошенничество с кредитными
картами или непредсказуемые изменения рынка.
Преимущества машинного обучения на фондовых

рынках заключаются в обработке больших объёмов 
данных, автоматизации процессов и улучшении точ-
ности прогнозирования. Однако финансовые рынки 
могут быть подвержены непредсказуемым событиям, 
которые могут исказить результаты моделей. Основ-
ными недостатками применения искусственного 
интеллекта в данной сфере являются возможность 
возникновения сильной волатильности цен на 
рынке, если все трейдеры будут использовать исклю-
чительно искусственный интеллект, сложности в 
предотвращении взломов платформ и их восстанов-
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лении после сбоев, высокая стоимость разработки 
качественных алгоритмов, ботов и платформ, что 
может ограничивать их доступность для многих 
трейдеров [8].

На сегодняшний день выделяют следующие ос-
новные этапы и подходы машинного обучения для 
прогнозирования стоимости акций: 
1) сбор и подготовка данных. Собираются историче-

ские данные о ценах акций, объёмах торгов, мак-
роэкономических показателях и других факторах, 
влияющих на стоимость акций. Данные очища-
ются от ошибок и нормализуются;

2) выбор алгоритма машинного обучения. Использу-
ются различные методы, такие как линейная ре-
грессия, деревья решений, случайный лес, гра-
диентный бустинг, нейронные сети и другие. Вы-
бор алгоритма зависит от специфики задачи и
предпочтений аналитика;

3) обучение модели. На основе собранных данных и
выбранного алгоритма создаётся модель, которая
будет прогнозировать стоимость акций. Модель
обучается на исторических данных, чтобы учесть
взаимосвязь между различными факторами и
стоимостью акций;

4) тестирование и оптимизация модели. После об-
учения модели проводится тестирование на но-
вых данных, чтобы проверить её качество и точ-
ность. Если необходимо, модель оптимизируется
путём настройки гиперпараметров, добавления
или удаления переменных и других методов;

5) применение модели для прогнозирования. После
успешной проверки и оптимизации модель готова
к использованию для прогнозирования стоимости
акций. Аналитик может использовать эту модель
для определения потенциальных точек входа и
выхода из рынка, а также для формирования ин-
вестиционных стратегий;

6) мониторинг и обновление модели. Со временем
рыночная ситуация может меняться, поэтому
модель необходимо регулярно обновлять и адап-
тировать к новым условиям. Это позволит со-
хранять её актуальность и повышать точность
прогнозов.
Машинное обучение играет важную роль в про-

гнозировании стоимости акций на фондовых рын-
ках, позволяя аналитикам и инвесторам принимать 
обоснованные решения на основе объективных дан-
ных и статистических моделей.

Модель линейной регрессии в машинном об-
учении — это математическая модель, которая опи-
сывает связь между несколькими переменными. 

Линейная регрессия выражается уравнением 
вида 

f(x) = b + m * x,

где m — наклон линии; b — смещение по оси Y. 
Изменение коэффициентов m и b влияет на рас-

положение прямой на графике, а оптимальное зна-
чение определяется с помощью функции потерь, 
которая минимизирует расстояние между объектами 
и прямой [2, с. 51–56].

В машинном обучении линейная регрессия ис-
пользуется для решения задач классификации и ре-
грессии, а также для создания искусственных ней-
ронных сетей и глубокого обучения.

Модель линейной регрессии может быть исполь-
зована для прогнозирования стоимости акций с 
учётом различных факторов, влияющих на их стои-
мость. Однако следует отметить, что результаты про-
гнозирования могут быть неточными из-за сложно-
сти финансовых рынков и влияния множества фак-
торов на стоимость акций.

Модель случайного леса в машинном обучении — 
это ансамблевая модель, основанная на методе бэг-
гинга — (метаалгоритм, предназначенный для улуч-
шения стабильности и точности алгоритмов машин-
ного обучения, уменьшающий дисперсию и помо-
гающий избежать переобучения). Модель использует 
множество решающих деревьев для классификации 
или регрессии данных. Дерево решений — это сред-
ство поддержки принятия решений, используемое в 
машинном обучении, анализе данных и статистике. 
Оно представляет собой структуру, состоящую из 
«листьев» и «веток». На рёбрах дерева записаны при-
знаки, от которых зависит целевая функция, а в «ли-
стах» записаны значения этой функции. Каждый 
лист представляет собой значение целевой перемен-
ной, изменённое в ходе движения от корня по рёб-
рам дерева до листа [7].

При построении дерева решений используются 
различные алгоритмы, такие как ID3, C4.5 и CART. 
ID3 основан на информационной энтропии, C4.5 
улучшает предыдущий метод, позволяя работать с 
числовыми атрибутами, а CART строит бинарные 
деревья решений. Эти алгоритмы выбирают при-
знаки для разделения на основе прироста информа-
ции или нормализованного прироста информации, 
что позволяет создать оптимальное решающее дерево 
[3, с. 45–58].

Для достижения цели и определения наиболее 
точной модели прогнозирования будем использовать 
датасет, содержащий 1826 данных с 23.11.2015 по 
20.11.2020. Датасет разделен на 7 семь параметров: 
дата, максимальная стоимость, минимальная стои-
мость, стоимость при открытии, стоимость при за-
крытии, объём, скорректированные значения. Про-
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гнозирование будет выполнено для параметра скор-
ректированные значения стоимости акции. Набор 
исходных данных разделён на обучающую и тестовые 
выборки в соотношении 80% к 20%. Исследование 
будет выполнятсявыполняться с использованием 
языка программирования Python, подключены биб-
лиотеки Pandas, Numpy, Matplotlib, Sklearn.

Библиотека Pandas используется для анализа и 
обработки данных, особенно в контексте работы с 
табличными данными. Применяется для загрузки, 
очистки, преобразования и хранения данных [1,  
с. 36].

Numpy — библиотека для работы с многомер-
ными массивами и матрицами. Используется для 
выполнения математических операций над боль-
шими наборами данных, таких как линейная алге-
бра, случайные числа и быстрое преобразование 
Фурье.

Matplotlib — библиотека для создания визуализа-
ций данных, таких как графики, диаграммы и изо-
бражения. Позволяет создавать статические и инте-
рактивные графики, а также настраивать их внешний 
вид и параметры отображения.

Библиотека Scikit-learn применяется для машин-
ного обучения, которая она предоставляет инстру-
менты для классификации, регрессии, кластериза-
ции и уменьшения размерности данных. В и вклю-
чает в себя различные алгоритмы и методы машин-
ного обучения, а также инструменты для оценки 
производительности моделей.

Для оценивания точности получившихся прогно-
зов будут найдены RMSE, MAE, MAPE, R2.

RMSE (среднеквадратическая ошибка) — это ме-
трика, которая измеряет среднее расстояние между 
прогнозами модели и фактическими значениями. 
Она используется для оценки качества моделей ре-
грессии и имеет преимущество перед MSE (средней 
квадратической ошибкой) в том, что её значение 
легче интерпретировать.

RMSE
n

y yi ii

n
= −( )=∑1 2

1

�
,

где n — количество наблюдений по которым стро-
ится модель и количество прогнозов, yi — фактиче-
ские значение зависимой переменной для i-го на-
блюдения, 

�
yi  — значение зависимой переменной, 

предсказанное моделью.
MAE (средняя абсолютная ошибка) — это ме-

трика, которая вычисляется как среднее абсолютных 
разностей между наблюдаемыми и предсказанными 
значениями. MAE используется для оценки качества 
моделей регрессии и является линейной оценкой, 
что означает, что все ошибки в среднем взвешены 
одинаково.

MAE
n

y y
i

n

i i= −
=
∑1

1

�
.

MAPE (средняя абсолютная процентная ошибка) — 
это метрика, которая измеряет отклонение прогно-
зов от фактических значений в процентах. Она ис-
пользуется для оценки качества моделей регрессии.

MAPE
n

y y

yi

n
i i

i

=
−

=
∑100

1

�
.

R2 (коэффициент детерминации) — это метрика, 
которая измеряет долю вариации зависимой пере-
менной, объясняемую независимыми переменными 
в модели. Она используется для оценки адекватности 
модели и для сравнения моделей с одинаковыми 
данными [5, с. 239–241].
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Приступим к созданию и обучению моделей  
(рис. 1).

Далее выполним прогнозирование. Для нагляд-
ности прогноз будет строиться как на обучающей 
выборке, так и на тестовой (рис. 3, 4).

Рис. 1. Отрывок программного кода

Источник: составлено авторами.
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По результатам прогнозирования, изображенных 
изображенным на графиках, можно сделать вывод, 
что наилучший прогноз получился при использова-
нии модели случайного леса.

Определим точность полученного прогноза. Для 
этого вычислим метрики для оценки качества мо-
дели (рис. 5).

Рис. 5. Вычисление метрик точности полученных моделей

Источник: составлено авторами.

Исходя из полученных оценок, можно сделать 
вывод, что наиболее высокий результат показала 
модель случайного леса.

4. ОБСУЖДЕНИЕ И ЗАКЛЮЧЕНИЕ

 Модель случайного леса предсказывает стои-
мость акций точнее, чем линейная регрессия, по-
тому что она формирует множество независимых 
алгоритмов, которые охватывают различные воз-
можные исходы для каждого входного вектора. Это 
позволяет деревьям принимать разнообразные ре-
шения и описывать разные исходы для входных 
векторов. При усреднении результатов эффект 
переобучения естественным образом нивелиру-
ется, и итоговое выходное значение оказывается 
достаточно точным и устойчивым к отдельным 
выбросам.

Рис. 3. Прогнозирование с помощью модели линейной регрессии

Источник: составлено авторами.

Рис. 4. Прогнозирование с помощью модели случайного леса

Источник: составлено авторами.
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