УДК 350.338.2, 550.385 DOI: 10.12737/szf-41201806 Поступила в редакцию 27.09.2017 Принята к публикации 19.12.2017

ЭЛЕКТРОННАЯ КОНЦЕНТРАЦИЯ НА ВЫСОТАХ ИОНОСФЕРНОГО СЛОЯ F1 В ПОСЛЕДНЕМ МИНИМУМЕ (2007–2009 гг.) ЦИКЛА СОЛНЕЧНОЙ АКТИВНОСТИ

ELECTRON DENSITY AT F1-LAYER HEIGHTS IN THE LAST SOLAR MINIMUM (2007–2009)

Г.П. Кушнаренко

Институт солнечно-земной физики СО РАН, Иркутск, Россия, kusch@iszf.irk.ru

О.Е. Яковлева

Институт солнечно-земной физики СО РАН, Иркутск, Россия, yakovleva@iszf.irk.ru

Г.М. Кузнецова

Институт солнечно-земной физики СО РАН, Иркутск, Россия, kuz@iszf.irk.ru

G.P. Kushnarenko

Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia, kusch@iszf.irk.ru

O.E. Yakovleva

Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia, yakovleva@iszf.irk.ru

G.M. Kuznetsova

Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia, kuz@iszf.irk.ru

Аннотация. Представлены результаты анализа годовых изменений дневной электронной концентрации N на высотах 140-200 км для последнего минимума солнечного цикла (2007-2009 гг.) по измерениям Иркутского дигизонда (52 °N, 104 °E). Для выделения закономерностей этих изменений определены новые коэффициенты известной авторской полуэмпирической модели (ПЭМ), описывающей связь N с характеристиками термосферы. Получено, что характерной особенностью годовых вариаций N в период минимума солнечного цикла является изменение их фазы на 180° в относительно узком интервале высот (170-180 км). Эти результаты, включая новые коэффициенты ПЭМ, являются оригинальными и представляют интерес для физики атмосферы и ионосферы.

Ключевые слова: полуэмпирическая модель электронной концентрации, годовые вариации, высоты слоя F1.

введение

Параметры профиля электронной концентрации N(h) на высотах ионосферного слоя F1 (120-200 км) жестко связаны с состоянием нейтрального газа термосферы [Щепкин, Климов, 1980], поэтому величины N в этом высотном интервале должны контролироваться не только зенитным углом Солнца, но и концентрациями основных газовых частиц и их температурами. На этих высотах происходит быстрое изменение аэрономических характеристик: отмечаются большие градиенты температуры нейтрального газа и быстрые изменения температур электронов и ионов. Особенности этой области высот проявляются в образовании слоя F1, своеобразном изменении формы N(h)-профиля во времени, а также зависимости от уровня солнечной активности и магнитной возмущенности. Удобно рассмотреть такого рода вариации N, используя расчеты с помощью разработанной авторами полуэмпирической модели (ПЭМ) [Щепкин и др., 1997], описывающей **Abstract.** We present the results of the analysis of annual variations in daily electron density (*N*) at heights 140–160 km for the last solar minimum (2007–2009) obtained from digisonde measurements at the ionospheric station Irkutsk (52 °N, 104 °E). New coefficients of the known semi-empirical model (SEM) describing the connection between *N* and thermospheric characteristics are calculated to identify regularities of these variations. We have revealed that a characteristic feature of the annual *N* variations during the solar minimum is a change in their phase by 180° in a relatively narrow altitude interval (170–180 km). These results and the new SEM coefficients are original and important for atmospheric and ionospheric physics.

Keywords: semi-empirical model of electron density, annual variations, F1-layer heights.

электронную концентрацию в зависимости от состояния термосферы, при этом легко выделить вариации, связанные с временем года и суток, в условиях разной солнечной и магнитной активности.

Цель настоящей работы — анализ вариаций электронной концентрации N в годовом цикле на высотах ионосферного слоя F1 (140–200 км) в минимуме солнечной активности 2007–2009 гг. Рассматривались отклонения рассчитанных значений N от экспериментальных в разные месяцы этих лет и обсуждались возможные причины, их вызывающие. Отметим, что полученные результаты расчетов справедливы в рамках использованной в работе модели нейтральной атмосферы NRLMSISE-00 [Picone et al., 2002].

МОДЕЛЬНЫЕ РАСЧЕТЫ

На фиксированных высотах слоя F1 величины *N* можно описать с помощью аналитического соотношения [Щепкин и др., 2005, 2007]

$$N/N_{av} = x_1 + x_2([O]/(5[O_2] + [N_2])^{1.5} + x_3([O]/[N_2])^{0.5} \cos(\chi)^{0.5} + (1) + x_4 \exp(-(T - 600)/600) + x_5(E/E_0).$$

Здесь $N_{\rm av}$ определяет среднее значение N по всему объему данных отдельно для каждой высоты, x_i коэффициенты уравнения (1). Концентрации нейтральных частиц [O], $[O_2]$ и $[N_2]$ и температура T вычисляются по модели нейтральной атмосферы NRLMSISE-00 [Picone et al., <u>2002</u>], χ — зенитный угол Солнца, Е — значение интегральной интенсивности потока ионизирующего излучения, Е0 соответствует значению Е в максимуме солнечной активности. Величины Е рассчитаны по модели [Tobiska, Eparvier, 1998]. Для получения коэффициентов x_i уравнения (1) был выбран массив ежедневных ежечасных значений N, измеренных с помощью Иркутского дигизонда на высотах 120, 130, ..., 190, 200 км в 2003-2009 гг. в моменты времени с 7 до 18 LT. Для вычисления характеристик термосферы и значений Е использовались ежесуточ-ные значения индекса F10.7 и его значения, усредненные по 81 дню (3 оборота Солнца). Уровень геомагнитной активности учитывался с помощью ежедневных 3-часовых значений индекса *Ap* [http:// wdc.kugi.kyoto-u.ac.jp]. В результате получены коэффициенты уравнения аппроксимации (1) для ст. Иркутск в минимуме солнечной активности, что является значительным вкладом в существующую версию ПЭМ (табл. 1).

коэффициенты уравнения аппроксимации (1)										
<i>h</i> , км	$N_{\rm av} \cdot 10^4 {\rm cm}^{-3}$	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅				
120	9.35	-0.1387	-7.245	4.261	0.0000	0.8025				
130	10.70	-0.2776	-7.167	4.505	0.1869	0.7202				
140	12.47	-0.3066	-6.225	4.458	0.1925	0.6873				
150	14.42	-0.3814	-4.803	4.160	0.3468	0.7123				
160	16.55	-0.4446	-2.760	3.710	0.4833	0.7606				
170	19.24	-0.5073	0.565	3.168	0.5719	0.7501				
180	23.06	-0.5759	4.977	2.627	0.5941	0.6790				
190	27.95	-0.6901	8.793	2.199	0.5940	0.7681				
200	32.92	-0.8756	10.967	1.972	0.6136	1.1206				

РЕЗУЛЬТАТЫ

Типичные формы рассчитанных кривых годового хода полуденных величин N_p на нижнем и верхнем уровнях рассматриваемого высотного интервала 140-200 км показаны на рис. 1. Годовые изменения N_p для трех лет минимума солнечной активности (2007-2009 гг.) представлены отдельно для высот 150 и 190 км. Можно отметить, что рассчитанные значения N_p, соответствующие одной высоте, довольно близки друг другу во все три года минимума. Максимальные значения отчетливо просматриваются на нижних высотах (в частности, на 150 км) в летние месяцы, а минимальные — в зимние. Такая форма кривых $N_p(D)$ (D — номер дня в году) характерна для высот 140-170 км. На высотах 190 и 200 км максимальные значения N_p имеют место, как правило, в зимние месяцы, а летом наблюдается минимум годового хода.

Рис. 1. Годовые изменения рассчитанных $N_{\rm p}$ на высотах 150 км (*a*) и 190 км (б) для трех лет: 1 — 2007 г., 2 — 2008 г., 3 — 2009 г. Штриховые кривые — экспериментальные значения (2007 г.)

Переход от одного типа кривых $N_p(D)$ к другому происходит вблизи высоты 170 км. Вблизи этой высоты происходит изменение фазы годового хода Nна 180°. Здесь отмечается самая маленькая амплитуда годовых вариаций. Описанные изменения формы годовых вариаций N_p обусловлены высотными вариациями газового состава, происходящими на фоне изменения зависимости скоростей процессов нейтрализации заряженных частиц ионосферы от электронной концентрации.

На рис. 2 показано годовое поведение (2007 г.) рассчитанных полуденных N_p на трех высотах — 150, 170 и 190 км. Для сравнения на каждой высоте приведены экспериментальные величины N_{21} , т. е. N, осредненные за 21 день по всему массиву данных (±10 дней с центром в данной точке). На всех высотах обнаруживается хорошее соответствие кривых, описывающих годовое поведение рассчитанных и экспериментальных N, как по величине, так и по форме. Сходство поведения N_{21} с обсуждаемыми рассчитанными вариациями N_p заключается в том, что на

Рис. 2. Годовое изменение рассчитанных в 2007 г. полуденных $N_{\rm p}$ на высотах 150 км (1), 170 км (2), 190 км (3). Штриховые кривые — экспериментальные N_{21} для каждой высоты

Таблица 1

Таблица 2, а

Рассчитанные $N_{\rm p}$ и величины N_{21} на высоте 150 км ($N \cdot 10^4$, см⁻³)

150 км	апрель								ИЮНЬ					
год	LT	8	10	12	14	16	18	8	10	12	14	16	18	
2007	$N_{\rm p}$	20	22	23	21	19	15	19	21	21	20	18	16	
	N ₂₁	14	19	21	19	14	7	15	20	21	21	17	11	
2008	$N_{\rm p}$	20	22	22	21	19	15	19	21	21	20	18	15	
	N ₂₁	14	18	19	18	14	6	15	19	20	19	16	11	
2009	$N_{\rm p}$	20	22	22	21	19	15	19	21	21	20	18	15	
	N ₂₁	14	19	20	19	14	7	15	20	21	20	17	10	

Таблица 2, б

Рассчитанные $N_{\rm p}$ и величины N_{21} на высоте 190 км ($N \cdot 10^4$, см⁻³)

	· · · · ·													
190 км		апрель							июнь					
год	LT	8	10	12	14	16	18	8	10	12	14	16	18	
2007	$N_{\rm p}$	33	35	35	33	31	26	25	27	28	27	25	22	
	N ₂₁	22	27	31	29	26	18	21	25	27	25	22	19	
2008	$N_{\rm p}$	33	35	34	33	30	26	25	27	27	27	25	22	
	N ₂₁	21	24	26	26	24	15	20	25	25	23	20	17	
2009	$N_{\rm p}$	33	35	35	33	31	26	25	27	28	27	25	22	
	N ₂₁	22	25	28	27	23	16	22	26	26	24	21	15	

Таблица 3, а

dN(%) в некоторые месяцы 2007 г. на высоте 150 км

LT	7	8	9	10	11	12	13	14	15	16	17	18
февраль	-	0	10	17	15	7	0	0	0	-	-	_
апрель	0	7	0	0	0	5	0	0	0	7	0	0
июнь	0	0	-5	-5	-5	-9	-5	-5	-5	-6	0	0
сентябрь	0	8	7	0	0	0	0	6	7	18	0	-
декабрь	-	-	_	0	0	9	8	0	-	-	-	_

Таблица 3, б

dN	(%)	в некоторые ме	сяцы 2007 г. на	высоте 190 км
----	-----	----------------	-----------------	---------------

LT	7	8	9	10	11	12	13	14	15	16	17	18
февраль	60	19	0	0	3	3	3	0	7	5	-6	50
апрель	0	4	8	3	0	0	3	3	0	0	0	0
июнь	-10	0	-8	0	0	-3	4	0	4	0	0	5
сентябрь	0	4	0	4	3	0	3	0	-4	4	5	30
декабрь	_	_	7	3	6	0	3	3	9	_	_	_

150 км отмечается летний максимум, а на 190 км значения N зимой заметно большие, чем в равноденствия и в летние месяцы. Аналогичные рисунки, показывающие годовые вариации рассчитанных $N_{\rm p}$ в 2008 и 2009 г., вписываются в представленную выше схему.

На высотах 190 и 200 км минимум кривой $N_p(D)$ устойчиво отмечается в июле. В то же время максимум наблюдается обычно зимой, в ноябре или декабре. Небольшое понижение N_p имеет место в декабре или январе по данным расчетов. В этом случае при минимальной солнечной активности характерна двугорбая форма кривой $N_p(D)$ с максимумами в марте и октябре–ноябре. Минимальные значения N_p отмечаются ниже 190 км в зимние месяцы. В целом можно говорить о хорошей степени аппроксимации большей части экспериментального материала. Для сравнения приведем таблицу рассчитанных N_{21} (апрель и июнь 2007–2009 гг.).

Данные табл. 2 (а, б) показывают, что между экспериментальными и рассчитанными *N* имеется вполне разумное соответствие. Рассмотрим откло-

нения dN (получены по среднемесячным значениям $N_{\rm p}$ осреднением ежедневных значений для каждого часа LT) от экспериментальных $N_{\rm p}$ по формуле

$dN = (N_{\rm p} - N_{\rm y})/N_{\rm y}.$

Отклонения dN для некоторых месяцев 2007 г. на высотах 150 и 190 км показаны в табл. 3 (а, б).

Отметим зимнее (февраль) превышение N_p над N_s в дополуденные часы на высоте 150 км, а также в утренние часы на 190 км. Эти явления могут быть связаны с погрешностями расчетов при больших (>70°) зенитных углах Солнца, но возможна также их связь с особенностями отклонения в газовом составе от его модельного описания [Щепкин и др., 2008]. На нижних высотах 140–160 км отсутствие данных можно объяснить тем, что при низкой солнечной активности, когда минимальные значения N приходятся на зимний период, они становятся малыми и ненадежными.

ЗАКЛЮЧЕНИЕ

ПЭМ позволяет детально проанализировать поведение ионосферы на высотах ниже 200 км, где днем соблюдается условие фотохимического равновесия.

Полученные в настоящей работе коэффициенты уравнения регрессии ПЭМ соответствуют конкретным условиям последнего минимума солнечной активности (2007–2009 гг.) и являются важным дополнением к ПЭМ. С помощью этих коэффициентов рассчитаны и проанализированы годовые вариации электронной концентрации *N* на высотах слоя F1 на ст. Иркутск.

Наиболее характерной особенностью поведения электронной концентрации в этот период является изменение фазы годовой вариации на 180° в относительно узком интервале высот (170-180 км), где отмечается наиболее слабая изменчивость дневных N в годовом цикле.

Дальнейшая работа с накопленным экспериментальным материалом позволит получить более полную ПЭМ для разных условий солнечной активности. Такая модель, в частности, важна для оценки газового состава термосферы на высотах слоя F1 по данным ионосферных измерений.

СПИСОК ЛИТЕРАТУРЫ

Щепкин Л.А., Климов Н.Н. Термосфера Земли. М.: Наука, 1980. 220 с.

Щепкин Л.А., Кушнаренко Г.П., Фрейзон И.А., Кузнецова Г.М. Связь электронной концентрации в средней ионосфере с состоянием термосферы // Геомагнетизм и аэрономия. 1997. Т. 37, № 5. С. 106–113.

Щепкин Л.А., Кушнаренко Г.П., Кузнецова Г.М. Годовые вариации электронной концентрации в области F1 ионосферы // Солнечно-земная физика. 2005. Вып. 7. С. 62–65.

Щепкин Л.А., Кузнецова. Г. М., Кушнаренко Г.П., Ратовский К.Г. Интерпретация измерений электронной концентрации с помощью полуэмпирической модели // Солнечно-земная физика. 2007. Вып. 10. С. 89–92.

Щепкин Л.А., Кузнецова. Г.М., Кушнаренко Г.П., Ратовский К.Г. Аппроксимация данных по измерениям электронной концентрации в средней ионосфере при низкой солнечной активности // Солнечно-земная физика. 2008. Вып. 11. С. 66–69. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 Empirical model of the atmosphere; statistical comparisons and scientific issues // J. Geophys. Res. 2002. V. 107, N A12. P. 1469. DOI: 10.1029/2002JA009430.

Tobiska W.K., Eparvier F.G. EUV97: Improvements to EUV irradiance modeling in the soft X-rays and EUV // Solar Phys. 1998. V. 147, N 1. P. 147–159.

http://wdc.kugi.kyoto-u.ac.jp

REFERENCES

Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. (GTD7-2000) NRLMSISE-00 Empirical model of the atmosphere: statistical comparisons and scientific issues. *J. Geophys. Res.* 2002, vol. 107, no. A12, pp. 1469. DOI: 10.1029/2002JA009430.

Shchepkin L.A., Klimov N.N. The Earth thermosphere. Moscow: Nauka Publ., 1980, 220 p.

Shchepkin L.A., Kushnarenko G.P., Freizon I.A., Kuznetsova G.M. The electron density connection with the thermospheric state in the middle ionosphere. *Geomagnetizm i aeronomiya* [Geomagnetism and Aeronomy]. 1997, vol. 37, no. 5, pp. 106–113. (In Russian).

Shchepkin L.A., Kushnarenko G.P., Kuznetsova G.M. Annual electron density variations in F1 region of ionosphere. *Solnechno-zemnaya fizika* [Solar-Terr. Phys]. 2005, vol. 7, pp. 62–65. (In Russian).

Shchepkin L.A., Kuznetsova G.M., Kushnarenko G.P., Ratovsky K.G. The interpretation of electron density measurements with using semiempirical model. *Solnechno-zemnaya fizika* [Solar-Terr. Phys]. 2007, vol. 10, pp. 89–92. (In Russian).

Shchepkin L.A., Kuznetsova G.M., Kushnarenko G.P., Ratovsky K.G. Approximation of electron density measurements data in middle ionosphere during the low solar activity. *Solnechno-zemnaya fizika* [Solar-Terr. Phys]. 2008, vol. 11, pp. 66–69. (In Russian).

Tobiska W.K., Eparvier F.G. EUV97: Improvements to EUV irradiance modeling in the soft x-rays and EUV. *Solar Phys.* 1998, vol. 147, no. 1, pp. 147–159.

http://wdc.kugi.kyoto-u.ac.jp

Как цитировать эту статью

Кушнаренко Г.П., Яковлева О.Е., Кузнецова Г.М. Электронная концентрация на высотах ионосферного слоя Fl В последнем минимуме (2007–2009 гг.) цикла солнечной активности. *Солнечно-земная физика*. 2018. Т. 4, № 1. С. 72–75. DOI: 10.12737/szf-41201806.