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___________________________________________________________________________________ 

 

The paper describes internal gravity waveguide modes, using dissipative solutions above the source. 

We compare such a description with an accurate approach and a WKB approximation for dissipationless 

equations. For waveguide disturbances, dispersion relations calculated by any method are shown to be 

close to each other and to be in good agreement with observed characteristics of traveling ionospheric 

disturbances. Unlike other methods, dissipative solutions above the source allow us to adequately 

describe the spatial structure of disturbances in the upper atmosphere. 
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___________________________________________________________________________________ 

 

INTRODUCTION 

 

This paper studies characteristics of trapped atmospheric modes extending over large heights. Such 

modes can be described by a dissipative solution above a source (DSAS) [Rudenko, Dmitrienko, 2015]. In 

fact, DSAS satisfies the upper boundary condition for trapped modes – lack of energy from above; and, 

since there is no source in the problem of trapped modes, DSAS is valid throughout the atmosphere. 

DSAS can actually take arbitrary values on Earth’s surface. Thus, the problem of finding solutions for 

trapped modes reduces to the problem of selecting DSAS that fulfills the lower boundary condition for 

trapped modes – zero vertical velocity on Earth’s surface; this boundary condition defines a dispersion 

equation for trapped modes.  

 

We deal with internal gravity wave (IGW) modes of a waveguide formed by temperature 

stratification of the lower atmosphere. Such modes even without atmospheric dissipation cannot be 

described by solutions with real eigenvalues owing to sub-barrier penetration from the waveguide. 

Strictly speaking, the trapped modes of interest are collective rather than individual discrete modes. 

However, for our problem this circumstance is significant only because we should frame the solution 

above the source with complex frequency and wavenumber as opposed to [Rudenko, Dmitrienko, 2015] 

where calculations were based on real frequency and wavenumber parameters. In this study, we assume 

the real frequency as specified and find its respective complex horizontal wavenumber at which DSAS 

meets the lower boundary condition. Such DSAS is the waveguide mode. According to [Rudenko, 
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Dmitrienko, 2015], DSAS results from a combination of three solutions: an analytical solution for the 

upper atmosphere (RI), considered in an isothermal approximation, and numerical solutions for a real, 

nonisothermal dissipative atmosphere in the middle part (RII) and for a real, nonisothermal one in a low 

dissipation approximation in the lower part (RIII). Thus, the solutions obtained for the waveguide modes 

relate their amplitude and other parameters in the lower atmosphere to their parameters in the upper 

isothermal atmosphere.  

 

Describing amplitude characteristics of waveguide modes at large heights is extremely important, 

first for their experimental detection. While energy of the waveguide modes is largely concentrated at low 

heights in the region of their trapping, due to exponential increase in relative disturbance values, which is 

caused by atmospheric density decrease, we can observe them only indirectly, predominantly in the upper 

atmosphere. In this region, relative disturbance values are larger than those in the lower atmosphere; at 

those heights where disturbances are not completely suppressed by dissipation, they can generate 

considerable disturbances of a charged ionospheric component. Just due to the “invisible” IGW 

propagation, in the lower atmosphere we can observe a very common phenomenon of traveling 

ionospheric disturbances (TIDs).  

 

The paper has the following structure. Section 1 describes the model atmosphere we employ for 

calculations. Section 2 deals with constructing and analyzing waveguide modes of IGW spectral range. 

We compare waveguide solutions found with DSAS to dissipationless approximation solutions obtained 

both with the WKB method and with numerical methods. Such comparisons pursue two goals at a time. 

First, they provide an insight into the dissipation effect on the main characteristics of waveguide 

propagation: dispersion relations, waveguide penetration and horizontal attenuation of waveguide modes. 

Second, they are additional tests to those performed in [Rudenko, Dmitrienko, 2015] both for a method of 

finding DSAS and for corresponding codes. We obtain dispersion characteristics and detailed description 

of the height structure of all disturbance components. The resulting waveguide solution has all 

characteristic features of trapped IGW in the real atmosphere: localization in view of temperature 

stratification; penetration through an opacity area; qualitative changes in the wave structure caused by 

dissipative disturbance propagation in the upper atmosphere. We receive full information about the entire 

height structure of waveguide modes that can be directly utilized to determine quantitative correlation 

between IGW modes and TIDs. We show that our waveguide solutions agree well with the main 

characteristics of TIDs following from observations: relations between periods and spatial scales, 

horizontal attenuation, values of total phase propagation velocity, slopes of phase fronts. 

 

Notice that waveguide modes have been studied before [Francis, 1973a, b], and the results are being 

widely used for theoretical works and for interpreting observation of various disturbances, including those 

in the upper atmosphere [Shibata, Okuzawa, 1983; Afraimovich et al., 2001; Vadas, Liu, 2009; Vadas, 

Nicolls, 2012; Idrus et al., 2013; Heale et al., 2014; Hedlin, Drob, 2014 et al.]. Francis [Francis, 1973a, b] 

defined dispersion characteristics and vertical structures of waveguide modes. The author established that 

one or two lower IGW modes could exist at ionospheric heights due to waveguide penetration. Francis’s 
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method can calculate well enough the structure of wave disturbances in the lower atmosphere and 

dispersion characteristics of modes trapped by irregularities of the lower atmosphere. The method in 

terms of its applicability to the upper atmosphere is discussed in detail in [Rudenko, Dmitrienko, 2015]. 

Here we note only that its peculiarities, such as the common usage of reduction of order of differential 

equations admissible only in weak dissipation, cannot actually give a correct description of disturbances 

in the upper atmosphere. Unlike Francis’s method, our method for finding DSAS employs reduction of 

order of wave equations to the second one (in our own way) only for heights of low dissipation where it 

makes sense. Thus, our method provides an adequate description for upper atmospheric disturbances. 

 

1. MODEL ATMOSPHERE 

 

Our calculations are based on a model atmosphere specified by the vertical profile of undisturbed 

temperature Т0(z) according to distribution of NRLMSISE-2000 with the geographic coordinates of 

Irkutsk for the local midwinter noon: 
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Here p0, ρ0 are undisturbed pressure and density; z is a vertical coordinate measured from Earth’s 

surface; g=9.807 m/s2 is the free fall acceleration; R=287 J/(kg·K) is the universal gas constant. We 

consider that the atmosphere displays thermal conductivity, taking its dynamic coefficient as constant. 

 

Since our method for finding wave solutions in addition to distribution of undisturbed temperature 

requires its first, second, and third derivatives (see [Rudenko, Dmitrienko, 2015]), as a calculation model 

we utilize an approximation of the model NRMSIS with smoothness up to the third derivative: 
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The initial dependence Т0(z) and its approximation are given in Figure 1. 

 

When selecting a model for winter, we focused on the fact that our results can be compared to the 

greatest extent with available particular observations for our region during the most reliable reception of 
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TIDs. In summer, they are scarcely observed in our region. There may be two reasons for this: either 

disturbance sources do not reveal themselves or during this period waveguide cutoff conditions in 

assumed propagation paths are violated. Extensive discussion of these factors calls for a separate analysis 

of possible waveguide propagation paths at diverse locations of sources and receiving points. 

 

2. IGW WAVEGUIDE 

 

In this section, we examine low-frequency IGW disturbances occurring at ionospheric heights far 

from their sources. Since such waves cannot be trapped in the upper atmosphere (approximately 

isothermal), we can interpret them only as disturbances leaking from the IGW waveguide located at lower 

heights.  

 

Next, we compare three methods for solving the waveguide problem: 1) dissipationless WKB 

description; 2) dissipationless numerical solution of boundary value problem; 3) waveguide solution with 

dissipation [Rudenko, Dmitrienko, 2015]. First, we give necessary formulas for each of the methods. 

 

3.1. Waveguide equations 

 

1. Dissipationless WKB description 

Combined equations (7) [Rudenko, Dmitrienko, 2015] in the main order of WKB approximation 

readily yields a square of wavenumber as 
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In this paper, we adopt the same designations as in [Rudenko, Dmitrienko, 2015].  

 

Discuss the profile of function U (Figure 2) for arbitrarily chosen wave parameters ω and 

 2 90 min,x Wk T      hor 2 1390 km.xk     It is evident that the waveguide can be located in the 

region of propagation below the height z1 due to the upper opacity region formed by negative values of U 

in z1<z< z2. Above z2 is the region of free vertical propagation into which a proportion of waveguide 

mode energy can penetrate. Note that a characteristic feature of the problem is a strong variation in shape 

and values of U depending on the wave parameters ω and kx. The height values z1 and z2 also vary. 

We can show that in the case of sub-barrier penetration the waveguide cutoff condition with the 

penetration in the WKB approximation can be represented by a modified Bohr-Sommerfeld condition of 

quantization (MBSCQ) with complex turning points 
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By substituting (5) in (3) and taking into account the complexity of the turning points zcj of the 

integration contour of integral on the left side of (3), derive an equation for complex addition to 

horizontal wave vector: 

 1
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Equation (6) for δ1/2 has three roots from which we choose one corresponding to the waveguide 

mode attenuation. 

 

2. Dissipationless boundary value problem 

We can most conveniently formulate the boundary value problem (BVP), using a second-order 

differential equation for disturbed vertical velocity vz. Such an equation can easily be derived from 

combined equations (2), (9), (10) from [Rudenko, Dmitrienko, 2015] 
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 (9) 

It is convenient to solve BVP for Equation (9) by the respective nonlinear Riccati equation: 

2 1 0,G PG BG      (10) 
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where G is related to vz by  

.z zG  u u  (11) 

The waveguide solution function G should satisfy the upper and lower boundary conditions. Given 

the upper boundary condition (z=z∞→+∞), G should correspond to an upward propagating wave: 

1
1 1
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In the numerical realization, the height z∞ is taken to be 430 km above which U is constant in our 

model. Under the lower boundary condition (z=0), we set 

G(0)=0. (13) 

This condition, according to (11), is equivalent to the condition of equality to the null function of vz. 

 

By solving initial value problem (10), (12) for G, we find values of the dispersion function that 

should meet the condition  

D(ω, kx)=G(0, ω, kx)=0. (14) 

Formally, Equation (14) can be solved by setting the first or the second argument of the dispersion 

function D to be real. In the former case, we have modes attenuating (due to the non-Hermitian character 

of the problem) in horizontal propagation; and in the latter case, modes damping in time. In this paper, we 

analyze modes only with real values of frequency ω. The vertical spatial structure of the mode for two 

dispersion values of ω and kx satisfying Equation (14) can be obtained by numerically solving the Cauchy 

problem for Equations (9) with the initial condition vz(0)=0, (0) 1z u  corresponding to the selection of 

boundary condition (13) for G. 

 

3. Boundary value problem with dissipation (BVPD) 

Since boundary conditions at the upper boundary for the waveguide modes are the same as for 

DSAS [Rudenko, Dmitrienko, 2015], it suffices to choose DSAS that meets the condition of equality to 

null vertical velocity on Earth’s surface to solve the waveguide problem. Hence, the respective dispersion 

equation takes the form 

( , ) (0, , ) 0.x z xD k k   u  (15) 

It is complex due to penetration through a barrier and the presence of dissipation. 

 

3.2. Numerical calculations of characteristics of internal gravity waveguide modes 

 

The calculations of waveguide modes have first and foremost established that for the frequency 

range corresponding to TIDs in the chosen model atmosphere there is only one nodeless waveguide mode 

with n=0, as was shown by all algorithms described in 3.1.  

For a general analysis of propagation characteristics of the resulting waveguide mode, Figure 3 gives: 
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Table. Comparison between theoretical and experimental results 

 Elevation  

(TW=82 min) 

Elevation  

(TW=182 min) 

Velocity  

(TW=82 min) 

Velocity  

(TW=182 min) 

P2 [–78°, –71°] [–86°, –731°] [18, 28] (m/s) [19.5, 32] (m/s) 

Ours –82° –86° 35 (m/s) 15.6 (m/s) 

 

Note the most crucial points: 

⦁ The model atmosphere in hand suggests the existence of only one mode. Since the chosen time 

of the model for the geographic location considered represents the most frequent facts of detection of 

ionospheric disturbances, we can assume that the conditions (anywhere) for two or more modes can either 

extremely rarely or never be realized.  

	

⦁ The three methods (BVPD, BVP, and MBSCQ) gave close values both for the horizontal 

velocity of waveguide mode propagation and for the horizontal attenuation. The horizontal attenuation is 

quite low for very-long-distance propagation of waveguide disturbances. The close agreement between 

the results of the exact methods with the result of the quasi-classical description formally inapplicable to 

the zero mode is a fairly interesting fact from a methodological point of view.  

	

⦁ Of particular interest is the property that seems to be specific only for IGW modes with 

penetration. The dependences presented in Figure 4 show a high Q-factor of waveguide oscillations at a 

rather slight decrease in the waveguide solution amplitude after passing through the opacity barrier [z1, 

z2]. The parameter ,Q  found in (3), is 0.41. For an ordinary acoustic waveguide mode, such a value of 

Q  could cause a quite strong horizontal attenuation of around 0.412. For IGW, the factor of the first 

term in (6) takes on a value of ~30 (for sound, ~1), providing a high Q-factor for modes of this type. From 

physical standpoint, this effect is assured by infinitesimal of the vertical group velocity of a leaking wave. 

 

Also noteworthy is that the dispersion characteristic of zero mode we obtained reproduces very well 

the characteristic relation of horizontal scales with periods of the observed TIDs. Additionally, we have 

good agreement of our values of the total phase velocity in the upper atmosphere with the observed phase 

velocities of TIDs [Ratovsky et al., 2008; Medvedev et al., 2009]. These results are consistent with the 

waveguide concept of TID nature. We thoroughly compare properties of waveguide disturbances with the 

observed TID properties described in [Medvedev et al., 2013]. Medvedev et al. [Medvedev et al., 2013] 

examined a space-time structure, analyzing data on electron density profiles of two beams of the Irkutsk 

Incoherent Scatter Radar and digisonde. 

 

Compare first the Elevation and Velocity values (given in Figure 1, [Medvedev et al., 2013]), 

obtained from a 12-hour window spectral analysis, with equivalent values of the angular characteristic 

vert

hor

( )
Atan

( )
c

c

k z

k z
 and velocity сph(zc) respectively. 
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The values listed in Table are assessed because they contain kvert whose application conditions at heights 

of around zc are not fulfilled. Moreover, the presence of the theoretically disregarded real wind at the heights of 

interest can lead to a significant shift in observed characteristics relative to theoretical ones. It is sufficient for 

us that the theoretically predicted characteristics fit the observed ranges of these characteristics. Also interesting 

is to compare our values with the most probable Elevation, Velocity, and Wavelength values (≈λvert) presented 

in Figures 4–6 in [Medvedev et al., 2013]. Especially notable are left panels of these figures for daytime 

recordings according to the daytime model atmosphere adopted. Note that in the daytime recordings the time 

spectrum of signals is calculated in the limited time range from ~1 to ~3 hr with two local peaks in the vicinity 

of 3 and 1.5 hr (Figure 2, [Medvedev et al., 2013]). The first peak is the highest with a narrow width; the 

second is broader with lower amplitude. Our Elevation and Wavelength values most closely fit the 

observations. The most probable Elevation value (Figure 4, [Medvedev et al., 2013]), equal to –75°, is close to 

our values (see Table). The most likely Wavelength value of 175 km (Figure 6, [Medvedev et al., 2013]) is 

very similar to our value λvert=192 km (Figure 3). The most probable Velocity value (Figure 5, [Medvedev et 

al., 2013]), equal to 35 m/s, match the period TW=1.4 hr in our plot in Figure 3. 

 

This value of TW fits one of the spectral distribution peaks (Figure 2, [Medvedev et al., 2013]). 

Hence, we see that our theoretical description is supported by observations. 

 

3.3. The height structure of inner gravity waveguide mode 

 

After finding the waveguide dispersion relations, to determine the height structure of the waveguide 

solution we should calculate DSAS for two wave parameters ω and kx related by the dispersion 

characteristic. This procedure has been described in the BVPD solution scheme. In the BVP scheme, we 

can derive the dependence vz(z), using the G(z, ω, kx) function found with the BVP procedure. To do this, 

it suffices to numerically integrate the first-order differential equation /z z G u u  with the initial value 

( ) 1.z z u  We employ the BVP result for the waveguide solution only to compare it with the solution 

according to our basic BVPD scheme. The comparison relies on vertical distributions of 

1/2

0

0

( ) .
(0)

z

z

z
c

 
   

u
u  Figure 5 compares values Re u  of BVPD and BVP solutions at a wave period 

TW = 90 min that has respective eigenvalues of the horizontal wavenumber kx = (4.66233·10–

3+i1.22515·10–5) km–1 for BVP and kx = (4.66215·10–3+i1.14273·10–5) km–1 for BVPD. We see that both 

the solutions are very close to each other in the region RIII with small dissipation. Above them, the plots 

are, of course, essentially different. The BVP solution comes to wave asymptotics in a homogeneous 

medium, while DSAS (BVPD) attenuates under the action of wave dissipation.  

Thus, Figure 5 clearly shows that the dissipationless wave description is valid only for a limited 

height range with the infinitesimal condition for s being fulfilled. 
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In this study, in addition to the dissipative solution, we have explored possibilities of dissipationless 

description. We showed that, despite its being inapplicable to the upper atmosphere, the dissipationless 

description appears to work fairly well in the lower atmosphere. It enables us to estimate the number of 

modes and derive testing values for numerical calculation of eigenvalues; the most convenient for these 

objectives is the WKB method. It is interesting to note the WKB description provides correct results despite 

its formal invalidity; yet there is good agreement between dispersion WKB characteristics with exact ones. 

 

We have demonstrated that the method we proposed does not give any significant errors comparable 

to errors in observational data. The specific calculations we made have an independent error related to the 

statistical character of the NRLMSISE model. This is the most significant factor of possible differences, 

obtained with this model, from observed values. Thus, we should generally compare our results with 

observable statistical characteristics. Therefore, the comparisons with experimental data we performed 

look sufficiently convincing. Using the dispersion relations and characteristics of wave propagation of 

runaway disturbance, we have obtained very good agreement with basic characteristics of observed TIDs: 

the ratio between horizontal scales and wave periods, the ability to propagate to many thousands of 

kilometers without significant attenuation; the reverse direction of vertical phase velocity; small values of 

vertical phase velocity, the specific slope of the phase front. 

 

We are grateful to Medvedev A.V. and Ratovsky K.G. for the useful contribution to our study. 
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