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Abstract. In this paper, we use numerical experiment 

methods to address the problem of determining charac-

teristics of ELF (0.3–3 kHz) electromagnetic waves 

recorded in the surface layer and providing the maxi-

mum amount of information about the Earth–ionosphere 

waveguide. We have analyzed the effect of the horizon-

tal spatial structure of electron density of the Earth–

ionosphere waveguide on propagation of electromagnet-

ic waves. We have identified characteristics that allow 

us to record them by instrumental methods in conditions 

of weakly disturbed ionosphere. The density profiles 

used in numerical experiments have been obtained from 

data acquired by the Partial Reflection Radar at the Po-

lar Geophysical Institute, located at the radiophysical 

observatory Tumanny in the Murmansk Region (69.0° 

N, 35.7° E), and by the IRI2016 model during the 

March 15, 2013 solar flare and the subsequent magnetic 

storm on March 17, 2013.  The electromagnetic signal 

propagation model used in this work is the adaptation of 

gas-hydrodynamic methods to electrodynamic applica-

tions. The model is based on the scheme of upwind ap-

proximation of spatial derivatives (Godunov’s method 

with correction of streams). We also use splitting by 

spatial directions and physical processes. Signal field 

attenuation due to conductivity and its rotation due to 

Hall conductivity of the medium are considered in sepa-

rate splitting steps by analytical formulas. 

 

Keywords: ELF wave propagation, numerical simu-

lation, ionosphere. 

 

 

INTRODUCTION 

Some of the main problems of radio physics regarding 

electromagnetic signal propagation in Earth’s atmosphere 

are to search for methods capable of ensuring stable com-

munications or radar (RAdio Detection And Ranging) at 

different frequencies; to determine conditions when the 

communication is not possible; to predict the possibility of 

elimination of such conditions, and to find factors hinder-

ing communications or radar. Diagnostics of the ionospher-

ic D-region is important for many physical applications. 

Currently, the main tried and tested means of such diagnos-

tics are partial reflection radars. Ionosondes and incoherent 

scatter radars formally cover the D-region, but have a low-

er accuracy than partial reflection radars [Akimov, Kalinin, 

2017]. The ionospheric D layer affects characteristics of 

electromagnetic signals in ELF (0.3–3 kHz) and VLF (3–

30 kHz) ranges. The question, however, remains as to how 

we can gain the maximum amount of information about D-

layer conditions from ground-based measurements of elec-

tromagnetic signals in the given range.  

In this paper, we use numerical simulation to exam-

ine the effect of small (3–5 %) changes in electron den-

sity in the D layer on electromagnetic signal characteris-

tics at a frequency of 1500 Hz. We have selected the 

small changes in electron density to determine the per-

formance potential of D-layer diagnostics by ELF sig-

nals. These changes were shown to have no effect on 

the amplitude of individual components of signal elec-

tromagnetic field on Earth’s surface, have little effect on 

the ratio of amplitudes of electric and magnetic field 

strengths, and marked effect on the phase difference  

between electric and magnetic field strengths. We have 

also studied the effect of horizontal dimensions of the 

region with increased density on the above signal char-

acteristics.  

For the numerical simulation of ELF signal propaga-

tion, we have used our previously developed model of 

electromagnetic signal propagation in the atmosphere–

lithosphere–ionosphere system. The model numerically 

integrates the system of Maxwell equations over time on 

a regular spatial grid. It is based on the explicit scheme 

of splitting by spatial directions and physical processes 

with the upstream approximation of spatial derivatives 

(Godunov’s method with correction of streams). This 

scheme is conservative, monotonic, has a second-order 

accuracy in time and a third-order accuracy in space.  

In the presented numerical experiments, we use a 

rectangular simulation area and the Cartesian coordinate 

system, ignoring the curvature of spherical layers of the 
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lithosphere, atmosphere, and ionosphere for the follow-

ing reasons. The largest of the horizontal dimensions of 

the simulation area is about six times less than the Earth 

radius, whereas the wavelength (~200 km) is compara-

ble with the dimensions of the simulation area. With 

such a ratio of scales, a signal propagates horizontally 

without multiple reflections from the ionosphere and 

lithosphere. The purpose of the simulation is to study 

the effect of local electron density irregularities in the 

D-region on electromagnetic signal characteristics. The 

plane geometry of the simulation area for all the pre-

sented numerical experiments gives the same small er-

ror, which has no effect on the discussed regularities in 

the signal characteristics. 
 

SETTING OF THE PROBLEM 

AND MEDIUM 

In this paper, we examine the effect of a slight in-

crease in the electron density in the lower ionosphere at 

high latitudes on ELF electromagnetic wave propaga-

tion at various configurations of horizontal electron 

density profiles. Medium parameters were set as fol-

lows: the neutral particle density was set by the empiri-

cal model NRLMSISE-00; electron density and temper-

ature, by the empirical model IRI 2016 with the correc-

tion by records from a medium-wave vertical sounding 

radar designed to explore the lower ionosphere, which is 

located at the radiophysical observatory Tumanny of the 

Polar Geophysical Institute in the Murmansk region 

(69.0° N, 35.7° E) [Tereshchenko et al., 2003], during 

and after the March 15, 2013 solar flare, namely, on 

March 15, 2013 at 09:00 UT (disturbed conditions, 

flare), on March 16, 2013 at 09:00 UT (quiet condi-

tions), on March 17, 2013 at 06:00 UT (disturbed condi-

tions, magnetic storm), and on March 16, 2013 at 06:00 

UT (quiet conditions). Vertical electron density profiles 

under these conditions are shown in Figure 1. The cor-

rection involved transferring the fine structure of the D- 

and E-regions derived from radar data to the profiles 

obtained with the empirical models IRI 2016 and 

NRLMSISE. 

The March 17, 2013 magnetic storm was triggered 

by the March 15, 2013 M-class solar flare and began 

when an interplanetary shock wave, which manifested 

itself on Earth’s surface as SSC (sudden storm com-

mencement) at 06:00 UT, arrived at the magnetosphere. 

At this instant, the solar wind velocity increased 

sharply from ~ 400 to ~650–700 km/s, the IMF Bz 

component became negative, thus providing a con-

stant energy input to the magnetosphere. The SYM-H 

index characterizing the magnetic storm intensity fell 

to –100 nT and remained at this level. The auroral AE 

index increased sharply to ~1000 nT and remained in-

creased. At 16:00 UT, AE showed the appearance of an-

other auroral activation (an increase in AE to ~2500 nT). 

At this instant, the solar wind velocity increased 

sharply from ~ 400 to ~650–700 km/s, the IMF Bz 

component became negative, thus providing a con-

stant energy input to the magnetosphere. The SYM-H 

index characterizing the magnetic storm intensity fell 

to –100 nT and remained at this level. The auroral AE 

index increased sharply to ~1000 nT and remained in-

creased. At 16:00 UT, AE showed the appearance of an-

other auroral activation (an increase in AE to ~2500 nT). 

At this instant, the solar wind velocity increased 

sharply from ~ 400 to ~650–700 km/s, the IMF Bz 

component became negative, thus providing a con-

stant energy input to the magnetosphere. The SYM-H 

index characterizing the magnetic storm intensity fell 

to –100 nT and remained at this level. The auroral AE 

index increased sharply to ~1000 nT and remained in-

creased. At 16:00 UT, AE showed the appearance of an-

other auroral activation (an increase in AE to ~2500 nT). 

The horizontal spatial electron density structure can 

also have an effect on results. To determine this effect, 

we have carried out three series of experiments with 

horizontal electron density profiles of different types. 

The first series simulates the transition from the quiet 

region to the region with increased electron density. The 

horizontal electron density profile is shown in Figure 2, a. 

The second series simulates the transition from the re-

gion of increased electron density to the quiet region 

(profile in Figure 2, b). The third series simulates the 

passage through the increased electron density region 

(Figure 2, c). In all the series, the transition was made 

using the Gaussian function. In the first two series, the 

horizontal gradient was changed to estimate its effect in 

the transition region on electromagnetic wave propaga-

tion; in the third one, the bandwidth was changed from 

0.25λ to λ, where λ is the wavelength. The magnetic 

field was set vertical, which is typical for high latitudes; 

its induction was 5.3∙10
–5

 nT. 

 

Figure 1. Approximated vertical electron density profiles on March 15, 2013 at 09:00 UT (a); on March 16, 2013 at 09:00 

UT (b); on March 17, 2013 at 06:00 UT (c), and on March 16, 2013 at 06:00 UT (d) 
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Figure 2. Horizontal electron density profiles for the experiment on electromagnetic wave propagation from the quiet region 

to the disturbed one (a); from the disturbed region to the quiet one (b); through the region with increased electron density (c) 

 

SIMULATION AREA, SPATIAL 

GRID, AND SIGNAL SOURCE 

In all our numerical experiments, the simulation area 

was a parallelepiped with a base of 512×1280 km, a 

height of 150 km in the atmosphere, and a depth of 50 

km in the lithosphere. Horizontal grid steps were 2 km; 

vertical ones, 2 km in the atmosphere and 0.5 km in the 

lithosphere. The time integration step was 4∙10
–6

 s.  

On all boundaries of the simulation area, we em-

ployed special free wave conditions to minimize the 

influence of unphysical reflections on simulation re-

sults. For the simulation, we used a stable harmonic 

source of signal and analyzed the results when all the 

processes associated with the passage of a primary 

signal front (the 35th period of oscillations) stopped. 

Therefore, despite the almost 100 % signal reflection 

from the high-conductivity lithosphere and ionosphere 

inside the simulation area, we employed the same con-

ditions as on horizontal faces of the computational area 

to avoid accumulation of errors on vertical faces. 

As a signal source in all the presented experiments 

we use a surface of one of the faces of the computation-

al area. This signal source allows us to set not only the 

amplitude of the signal in time, but also its distribution 

in space; delays may be used to form the wavefront of 

the desired shape just as in a plane equidistant phased 

antenna array [Voskresenskii et al., 2012]. The experi-

ments discussed in this paper simulated a 1500 Hz plane 

wave (a wavelength of ~200 km) emitted to the area at 

the right angle to the plane of the source. 

 

DESCRIPTION OF THE MODEL 
The model of electromagnetic signal propagation in 

the Earth–ionosphere waveguide in view of electron 

inertia in the ionosphere adopted in this paper has been 

developed through the numerical integration of Maxwell 

equations over time on a regular spatial grid, using an 

explicit scheme. It is based on splitting by spatial direc-

tions and physical processes. In the scheme, propagation 

steps for each direction and steps of attenuation and 

rotation of the electric field alternate. In propagation 

steps in spatial directions, we also use the upstream ap-

proximation of spatial derivatives (Godunov’s method 

with correction of streams). The scheme is conservative, 

monotonic, has a second-order accuracy in time and a 

third-order accuracy in space. 

 

Scheme of numerical integration of Maxwell 

equations in the lithosphere 

Let r=(x, y, z) be the Cartesian coordinates; t be the 
time; E(r, t), D(r, t), H(r, t), and B(r, t) be the magnetic 
and electric field strength and induction; j(r, t) be the 
current density at t at a point with the radius vector r. 
Consider the Faraday and Maxwell equations in the SI 
system 

rot ( , ), rot ( , ) ( , ).t t t
t t

 
   

 

B D
E r H r j r  (1) 

In the lithosphere, these equations are closed by the 
Ohm law as  

( , ) ( ) ( , ),t t j r r E r  (2) 

where σ(r) is the scalar conductivity of the medium, and 
by constitutive equations  

0 0( , ) ( ) ( , ), ( , ) ( ) ( , ),t t t t     D r r E r B r r H r  (3) 

where ε(r) and μ(r) are dimensionless relative permit-
tivity and permeability of the medium at a low-
frequency limit; ε0 and μ0 are electric and magnetic 
permeability of vacuum.  

In the calculations, we assume that in the lithosphere 
μ(r)=1, but we use μ in subsequent formulas as well 
because the method in hand allows us to consider the 
general case with the variable μ(r).  

Let 0 0 01/c     be the velocity of light in vacuum;

0( ) / ( ) ( )c c  r r r  be the velocity of light in medium at 

a point with the radius vector r. System (1)–(3) can be 
written as 

2

0

0

rot , rot .
c

t t

   
    

      

B E B
E E  (4) 
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For the numerical integration of (4) we employ the 

method of splitting by physical processes. The total in-

tegration step breaks down into two substeps. One of 

them is a substep of propagation, at which the system of 

equations 

2

0rot , rot ,
c

t t

  
    

    

B E B
E  (5) 

is integrated; the second step is a substep of signal at-

tenuation, at which the system of equations  

0t

 
 

  

E
E   

is analytically integrated from formulas 

0

( )
( , ) ( , )exp .

( )
t t

  
    

  

r
E r E r

r
 The correct se-

quence of the substeps of splitting provides the second-

order accuracy in time. 

Consider the numerical integration of (5). Let us in-

troduce renormalized fields 0( , ) ( , ),t c tB r B r  

0( , ) / ( ) ( , ),t c c tE r r E r  and a vector ( ) cM r  in 

the calculations equal to ( ) ( ) / ( )c c   M r r r in 

the general case. Multiplying the Faraday equation by 

c0, we get 

rot(c ).
t


 



B
E  (6) 

Substituting the introduced notations in the Maxwell 

equation brings this equation to the form 

 rot .c
t


    

E
B M B  (7) 

Let us introduce matrices ,xR  ,yR  zR  and zero 

matrix :O  

0   0   0 0   0   1

0   0 1 , 0   0   0 ,

0   1   0 1  0   0

0 1    0 0   0   0

1    0    0 , 0   0   0 .

0    0    0 0   0   0

х y

z

   
   

     
      

   
   

    
   
   

R R

R O

 (8) 

The operator rot in Cartesian coordinates can be 

written as 

rot .x y z

x y z

  
  

  

a a a
a R R R  (9) 

Let us introduce a six-dimensional column-vector 

of variables  , , , , ,
T

x y z x y zB B B E E Eu  and a vec-

tor  1 2 3 4 5 6, , , , , ,
T

F F F F F FF  whose components 

are given by 

 1 2 3 4 5 60, , , .
T

F F F F F F        M B  (10) 

Using notations (8) and Formulas (9) and (10), the 

system of Equations (6) and (7) can be represented as a 

vector equation 

( ) ( ) ( )
,x y z

c c c

t x y z

   
   

   

u u u u
A A A F  (11) 

where ,xA  ,yA  zA  are the 6×6 symmetric matrices 

given by 

, ,

.

x y

x y

x y

z

z

z

   
    
       

 
 
  

O R O R
A A

R O R O

O R
A

R O

 (12) 

Vector equation (11) gives a six-dimensional linear 

hyperbolic system of first-order equations written in the 

conservative form. Its right part F depends linearly on 

components of the vector u. For the numerical integra-

tion of such systems many difference schemes have 

been developed, in particular schemes of higher-order 

accuracy that are applied to gas dynamics equations. 

These schemes are described in most detail in mono-

graphs [Kulikovskij et al., 2012; Bisikalo et al., 2013]. 

Using the method of splitting by spatial directions, 

we can devise clear monotonic schemes of numerical 

integration of (11), which reduce to successive integra-

tion of spatially one-dimensional hyperbolic equations. 

At each time step, we should successively integrate 

three systems of equations, for example, in the follow-

ing order: 

   

 

, ,

.

x yx y

z z

c c

t x t y

c

t z

    
   

   


 

 

u uu u
A F A F

uu
A F

 (13) 

In this case, the right-hand sides of systems (13) are 

selected so that they remain unchanged in their splitting 

step and satisfy the equality  

.x y z  F F F F  (14) 

These conditions are met if we specify them using 

the formulas 

 0, 0, 0, 0, , ,
T

x z x y xM B M B F   

 0, 0, 0, , 0, ,
T

y z y x yM B M B F   

 0, 0, 0, , , 0 .
T

z y z x zM B M BF   

At each splitting step for two magnetic field compo-

nents and two electric field components orthogonal to 

the step direction, we calculate signal propagation, us-

ing a finite-difference method. As initial conditions for 

each system of equations in (13) we take values calcu-

lated in the previous splitting step. We can preserve the 

second order of the time approximation in the splitting 

scheme by cyclically changing the order of splitting 

steps, for example, by first making steps in spatial direc-

tions in the following order: xyz, yxz, zxy, xzy, yzx, zyx. 

This assertion is justified, for example, in [Bisikalo et 

al., 2013; Kovenja et al., 1981]. 

Given a uniform grid with respect to tn=t0+nτ, 
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where τ is the time step, and a uniform spatial grid in 

Cartesian coordinates whose integer and half-integer 

nodes are specified by relations 

 
   

 

0 0 0

, ,

1/2 0 1/2 0

1/2 0

, , ,

, , ,

1/ 2 , 1/ 2 ,

1/ 2 ,

i x j y k z

i j k i j k

i x j y

k z

x x ih y y jh z z kh

r x y z

x x i h y y j h

z z k h

 



     



     

  

  

where  hx, hy, hz are grid steps along the X, Y, and Z axes 

respectively. For values of the f function in the grid nodes 

we will use notations  , , , ,, .n

i j k n i j kf r t f  

Consider the layer-by-layer transition for the first 

system of (13), which is integrated in the splitting step 

in the direction x. In this case, we represent the matrix 

given by the first formula in (10) xA  as 
1

,x



A QΛQ  

where Λ  is the diagonal matrix, whose diagonal has 

eigenvalues of ;xA   Q  is the matrix whose columns 

are right eigenvectors of the matrix ,xA  determined up 

to a factor; 
1

Q  is the matrix inverse to .Q  Rows of the 

matrix 
1

Q  are left eigenvectors of .xA  These matrices 

are constant. They can be taken in the form 

0   0    0   0   0    0

0   1    0   0   0    0

0   0 1   0   0    0
,

0   0    0   0   0    0

0   0    0   0   1    0

0   0    0   0   0 1

1      0      0     0     0     0

0    1/2

 
 
 
 

  
 
 
   



Λ

Q

1

    0     0     0   1/2

0      0    1/2  0   1/2    0
,

0      0      0    1     0     0

0      0 1/2   0   1/2   0

0 1/2     0    0     0   1/2

1   0   0   0    0    0

0   1   0   



 
 
 
 
 
 
 
   

Q

0    0 1

0   0   1   0 1    0
.

0   0   0   1    0    0

0   0   1   0    1    0

0   1   0   0    0    1

 
 

 
 
 
 
 
  
    

With the matrices ,Λ  Q , and 
1

Q , we represent the 

first system of equations in (13) as a vector equation 

1 ( )
.x

c

t x

 
 

 

u u
QΛQ F  (15) 

We introduce a column vector of characteristic vari-

ables (linearized Riemann invariants) in the direction x, 

given by the formula 
1

.


w Q u  Components of the 

vector w are given by 

1 2 3

4 5 6

, , ,

, , .

x y z z y

x z y y z

w B w B E w B E

w E w B E w B E

   

       

Multiply Equation (15) on the left by 
1

.


Q  The re-

sult is a vector equation 

1( )
,x

c

t x

 
 

 

w w
Λ Q F  (16) 

which is a system of six scalar equations for characteris-

tic variables.  

As a result, the numerical integration of the first sys-

tem of (13) reduces to the numerical integration of four 

independent spatially one-dimensional transfer equa-

tions (16) for characteristic variables 

2 3

5 6

, ,

, .

y z z y

z y y z

w B E w B E

w B E w B E

   

   
  

This integration is made using the explicit upwind 

scheme having the third-order accuracy in space and the 

second-order accuracy in time. This scheme is described 

in detail in [Mingalev et al., 2018a, b].  

Let us briefly consider the main ideas underpinning 

the numerical scheme.  

Scheme of numerical integration of Maxwell 

equations in the ionosphere 

For the ionosphere, we assume that the dimension-

less relative permeability of the medium ( ) 1 r  and 

the formula 0( , ) ( , )t t B r H r  is fulfilled. We also 

suppose that there is plasma polarization 

  0, ( , ) ( , ),t t t  D r E r P r where ( , )tP r is the polari-

zation vector, the polarization current density 

/ t  Р j  coinciding with the total current density in 

plasma. The Faraday and Maxwell equations in this case 

take the form 

2

0

0

2
rot , rot .c

t t

 
   

  

B E
E B j  (17) 

System (17) is closed by the equation for the density of 

the electron current generated by the signal field: 

  2

e e e 0 ,v
t


     



j
j j b E   

where ve is the electron collision frequency, 

e вн e/e m  B  is the electron gyrofrequency, Bext is 

the external geomagnetic field, вн вн/ ,b B B  

 2 2

e e e 0/e n m    is the squared electron plasma fre-

quency. 

In the ionosphere, as in the lithosphere, the method 

of splitting by physical processes is applied. The correct 

sequence of the splitting substeps provides the second-

order accuracy in time. At the propagation substep, we 

take into account only signal propagation and numeri-

cally integrate the system of equations  

2

0rot , rotc
t t

 
  

 

B E
E B  (18) 
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using the same scheme as for System (5) in the litho-

sphere.  

At the signal attenuation and rotation substeps, the 

signal magnetic field does not change, and only the 

electron field attenuation and rotation due to the exter-

nal geomagnetic field are taken into account. At each 

point of the computational grid, we analytically inte-

grate the system of equations 

  2

e e e 0

0

2
, .v

t t

 
       

  

E j
j j j b E  (19) 

This system is divided into two independent systems for 

field-aligned electric field ( , )E  b j  and current 

( , )j  b j   

2

e e 0

0

2
,

E j
j v j E

t t

 
     

  
 (20) 

and transverse electric field E  E E b  and current 

:j  j j b  

 

0

2

e e e 0

2
,

.

t

v e
t





  


 

 


    



E
j

j
j j b E

 (21) 

Systems (20) and (21) are self-contained linear sys-

tems of homogeneous differential equations (HDE) with 

constant coefficients. Solutions of the Cauchy problem 

for these systems are expressed by rather cumbersome 

analytical formulas.  

In this part of the ionosphere, where the inequality 

e 20,v    holds, systems (20) and (21) are replaced by 

simpler equations and system  

 

2

e

e

2

e e e

2 2

ee e

2
,

2
,

E
E

t v

v

t vv


 

 
 



  
    

   

E
E E b

  

which also have analytical solutions of the Cauchy 

problem.  

The above scheme allows us to consider the fre-

quency dispersion and simulate propagation of broad-

band signals of arbitrary form. 

 

Conditions on the boundary of the simula-

tion area 

In the model experiments, on all external boundaries 
we set a free wave boundary condition, which was 
achieved by zeroing the stream incoming from outside 
the simulation area. This approach provides low coeffi-
cients of reflection of a plane wave from the simulation 
area boundaries: for waves incident at an angle of 80° to 
90°, the ratio of the amplitude of the reflected wave to 
the amplitude of the incident plane wave does not ex-
ceed 0.01. At an incidence angle of 60°, this ratio is 
already ~0.05; at an angle of 45°, ~0.16; at an angle of 
27°, ~0.33; and at an angle of 18.4°, ~0.43 [Mingalev et 
al., 2018a]. By comparison: the FDTD method (finite-

differences time-domain method) [Yee, 1966] for sim-
ple boundary conditions such as Mur [Mur, 1981] and 
Liao [Liao, 1984] conditions gives reflection of the or-
der of 0.1 ... 1 %, but only if a wave is incident on the 
boundary at the right angle. When a wave is incident at 
an acute angle, the reflection coefficient increases to 
100 % in case of tangential incidence. When using a 
continuous source, even such small reflections generat-
ed by the scheme in hand are, however, sufficient for 
accumulation of errors in the simulation area, hence the 
need for suppression methods such as PML (perfectly 
matched layer) used in FDTD models [Berenger, 1994]. 
It is this type of source that was applied in the experi-
ments we present, which led to the need for the adapta-
tion and use of the PML method. Splitting the scheme 
with respect to spatial variables and physical processes 
allows us to apply the profile of electric and magnetic 
losses, proposed by Berenger, directly to streams of the 
upstream scheme on the boundary of the simulation 
area. The geometric profile of losses within an individu-
al layer has the form 

( / )0 0
0

ln( )
( ) ln( ) ,

2 ( 1)

r x

N

c g
r R g

x g


  

 
 (22) 

where g is the geometric progression coefficient; Δx is 
the step in space; c0 is the velocity of light; N is the 
PML number, counting from the interface of the compu-
tation area and boundary; r is the distance from the 
boundary; R0 is the coefficient of reflection from the 
first layer. In the presented numerical experiments, we 
use the loss profile calculated from Formula (22) with 
the following parameters: R0 =0.01 (1 %), the progres-
sion coefficient g=2.15, the number of layers is 14. De-
spite the fact that the coefficient of reflection from the 
first layer is not less than that characteristic of the given 
scheme when zeroing outgoing streams at incidence 
angles of 80° to 90°, and in practice it is even larger due 
to reflections from subsequent layers, the main ad-
vantage of the PML method is its extremely weak de-
pendence on the angle of electromagnetic wave arrival. 
This feature is also demonstrated by the version adapted 
for the upstream scheme. 

 

RESULTS AND DISCUSSION 

We have carried out numerical experiments of seven 
types: four experiments with the simulation area homo-
geneous in horizontal and vertical electron density pro-
files (Figure 1); three series of experiments with the tran-
sition in the direction of wave propagation (Figure 2). 
The simulated signal analyzed in all the numerical exper-
iments was set by the sinusoidal function with a frequen-
cy of 1500 Hz. We do not discuss the transients associat-
ed with the beginning of the counting and the passage of 
the wave front through regions with non-zero horizontal 
gradient of electron density. All results discussed below 
have been obtained for the stable mode (the 30th–35th 
oscillation periods from the beginning of the simulation). 
It is therefore unreasonable to analyze directly temporal 
forms of electromagnetic signal components because they 
are identical to the original signal. Further, we compare 
and discuss some electromagnetic signal characteristics, 
such as amplitude and phase, as well as their derivatives. 
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Figure 3, a shows the percentage difference between 

amplitudes of the main wave electric field component 

for the cases of signal propagation when the entire re-

gion had an electron density profile characteristic of 

quiet conditions on March 16, 2013 at 06:00 UT and 

when the horizontal electron density profile had a transi-

tion from the quiet region to the region with increased 

electron density, which had a profile characteristic of 

the magnetic storm conditions on March 17, 2013 at 

06:00 UT. Figure 3, b shows the difference between 

amplitudes of the main wave magnetic field component 

in the same experiments. Figure 4, a, b displays the am-

plitude difference of the main component of wave elec-

tric and magnetic fields for the cases of signal propaga-

tion when the entire region had an electron density pro-

file typical of conditions of the magnetic storm on 

March 17, 2013 at 06:00 UT and when the horizontal 

electron density profile had a transition from the region 

with increased electron density to the quiet region, 

which had a profile characteristic of March 16, 2013 at 

06:00 UT. We can see that propagation through the re-

gions of both positive and negative horizontal electron 

density gradients has an effect on amplitude characteris-

tics of electromagnetic waves, and the higher is the gra-

dient in the transition region the stronger is the effect. 

However, in the case of weak electron density perturba-

tions, changes in amplitudes of the main electromagnet-

ic field components are not sufficient to be recorded by 

ground-based observation methods. 

The analysis of electromagnetic wave propagation 

through the region with increased electron density lo-

cated perpendicular to the propagation direction and 

parallel to the plane of the wave has revealed no signifi-

cant effect on signal amplitude characteristics, irrespec-

tive of the ratio of bandwidth to wavelength. Obviously, 

a separate recording of electromagnetic field compo-

nents cannot be used for analyzing weak perturbations 

of electron density in the ionosphere since the amplitude 

response to them does not exceed the background noise 

level. 

The situation slightly improves in case of joint anal-

ysis of the electric and magnetic electromagnetic field 

components. Figure 5 plots the wave resistance of the 

medium, calculated as the ratio of the magnetic and 

electric fields for the cases of horizontally homogeneous 

medium with vertical profiles of all the types shown in 

Figure 1 and for the cases of propagation through the 

region with increased electron density λ and 0.25λ wide. 

Obviously, this approach can clearly distinguish the 

cases with the presence of regions with electron density 

perturbations in the ionosphere along a radio path from 

the cases of quiet conditions, but weakly reacts both to 

the magnitude of electron density perturbations and to 

the horizontal structure of these perturbations. To im-

plement this approach, for the data analysis recorders in 

the case of a plane wave propagating in the plane of the 

Earth–ionosphere waveguide should detect the vertical 

electric field component and two horizontal magnetic 

field components. 

In the case of waves of another type or arbitrary propa-

gation direction, it is necessary to fix all the six elec-

tromagnetic field components. 
Figure 6 shows phase differences between magnetic 

and electric field strengths for the cases of horizontally 
homogeneous medium with vertical profiles of all types, 
shown in Figure 1, and for the cases of propagation 
through the region with increased electron density λ and 
0.25λ wide. We can see that the phase characteristics are 
most clearly differentiated depending on the intensity of 

 

 

Figure 3. Percentage difference between amplitudes for electric (a) and magnetic (b) fields for signal propagation when the 

entire region had an electron density profile characteristic of the quiet conditions on March 16, 2013 at 06:00 UT and when the 

horizontal electron density profile had a transition from the quiet region to the region with increased electron density  
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Figure 4. Percentage difference between amplitudes for signal propagation cases when the entire region had an electron den-

sity profile of the magnetic storm conditions on March 17, 2013 at 06:00 UT and when the horizontal electron density profile had 

a transition from a region with increased electron density to a quiet region: electric field strength (a); magnetic field strength (b)  

 

Figure 5. Wave resistance of the medium 

 

 

of electron density perturbation both for changing verti-

cal electron density profile and for the horizontal profile 

as compared with the previously considered ones. The 

question remains as to perturbation of what type caused 

the phase change in each case. 

The question also remains about the dependence of 

the phase shift on the form of the electron density pro-

file as well as its value for waves of different ranges. 

These and many other questions require further study, 

which is beyond the scope of this paper. 

To analyze phase characteristics, it is necessary 

when recording electromagnetic field components to 

make an accurate time reference of the recorded electric 

and magnetic components. In case of development of a 

network of receivers, which can help to identify hori-

zontal ionospheric irregularities, it is necessary to pro-

vide an accurate time reference of the recorded field com-

ponents to the universal time, as in [Pilgaev et al., 2008]. 
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Figure 6. Phase difference between electric and magnetic field strengths 

 

CONCLUSION 

We have used numerical experiment methods to de-

termine characteristics of ELF electromagnetic waves 

recorded in the surface layer, which provide the maxi-

mum amount of information about the state of the 

Earth–ionosphere waveguide.  

We have found an effect of horizontal gradients of 

electron density on the amplitude of ELF electromag-

netic signals at the transition between regions with dif-

ferent characteristics of the Earth–ionosphere wave-

guide. We have shown that in case of minor electron 

density changes electromagnetic signal amplitude 

changes are negligible and do not exceed 1 %. 

We have revealed that the vertical electron density 

profile has a significant effect on the wave resistance of 

the medium and on the phase difference between mag-

netic and electric components. We have shown that if 

electron density increases in the D-region the wave re-

sistance of the medium increases too, and the electro-

magnetic field component E begins to lag behind H. We 

think that the phase lag of the electric field behind the 

magnetic field is due to inertia of electrons and their 

collisions with neutral particles of the ionosphere. The 

electric current density induced by the electric field of 

the signal affects the phase shift between the moments 

when electric and magnetic fields of the signal reach 

maximum values at a fixed point of the ionosphere. 

The calculations lead to the conclusion that the 

ground-based systems of ELF wave detection the least 

suitable for monitoring the state of the ionosphere should 

contain three recorders: one for the vertical electric com-

ponent and two for the horizontal magnetic component of 

the electromagnetic field. For this purpose, it is important 

to provide proper synchronization between the recorders 

and the universal time. 

The research was supported by RSF (project No. 

18-77-10018). 
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