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_____________________________________________________________________________________ 

 

The barometric effect of cosmic ray neutron component was estimated on the example of the Antarctic 

station Mirny. We used hourly data from continuous monitoring of neutron component and data from a 

local weather station for 2007–2014. Wind speed at the station Mirny reaches 20–40 m/s in winter that 

corresponds to the dynamic pressure 5–6 mbar and leads to a 5 % error in variations of neutron 

component because of dynamic effects in the atmosphere. The results can be applied to detectors located 

in high-latitude and high-mountain regions where the wind speed can be significant. 
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_____________________________________________________________________________________ 

 

INTRODUCTION 

 

Cosmic ray variations can be very effectively studied by such precision detectors as neutron 

monitors. For instance, the hourly-averaged statistical accuracy of a standard neutron super-monitor 

18-NM-64 at sea level is ~0.15 %; therefore the level of other possible errors must be not worse than the 

statistical error. Among such possible errors are those caused by exclusion of barometric effect from 

observations. A typical accuracy of modern pressure sensors is 0.2 mbar. This guarantees the required 

accuracy in corrections ≈0.15 %. However, there is another circumstance that is difficult to take into 

account. The barometric effect primarily caused by neutron absorption in the atmosphere depends on the 

amount of matter over a sensor, i.e. on static pressure. Commonly used pressure sensors measure total 

pressure as a sum of static and dynamic pressure. Objectives of this study include experimental determination 

of dynamic pressure contribution and introduction of necessary corrections to observation data. 

 

Dynamic pressure is conditioned by a wind flow and is equal to kinetic energy of unit volume of matter: 

2
D

1
,

2
P V   

where ρ is the air density, V is a flow velocity. However, only a part of kinetic energy CxPD is converted 

into potential energy and has an effect on an obstacle and in the end on pressure sensor readings. The 
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The count rate of the detector NC corrected for barometric effect (static pressure) can be represented as 

0 D

0
C

[ ( )]

C U 0 DU exp( ( )) exp( ),xP P C P

x

N

N N e N P P C P         (2) 

where P0 is an average pressure in the time range. The barometric effect β>0 (for Mirny β=0.73 %/mbar, 

P0=980 mbar) is determined during a quiet and windless period. By finding the logarithm of Equation (1) 

and transposing terms with unknowns to the right side, obtain 

0

C C Dln ln ,xN N C P    or ,y a cx   

where 0
Cln ,y N  Cln ,a N  and D ,x P  , i.e. a regression equation linear in a and c. 

 

DATA CORRECTION FOR PRIMARY VARIATIONS  

 

When solving the problem of estimated barometric effect, we should remove primary variations 

from the measured count rate of the detector NU [Dorman, 1974; Krymsky et al., 1981; Kobelev et al., 

2013]. This can be accomplished if we substitute NU with 

U / (1 ),N    

where ν denotes primary variations for this station. The last equation is derived from U B B( ) / ;N N N    

then Equation (2) is 

0
C

C U 0 D/ (1 )exp( ( )) exp( ).x

N

N N P P C P        (3) 

In a zero-harmonic approximation, primary variations can be excluded from data acquired at a 

reference station S as follows. Write variations for two detectors as 10 0a C   and S S
10 0 ,a C   where С0 

and S
0C  are reception coefficients for the station Mirny and reference station respectively.  

 

By eliminating the unknown zero harmonic amplitude a10, derive 

S 0
S
0

.
C

C
     (4) 

Equation (4) accounts for the difference between parameters of the stations (altitude, geomagnetic 

cutoff rigidity) and allows us to employ any station as a reference one. In this study, the reference station 

is Oulu Cosmic Ray Station. 

 

It is important to solve the problem of accounting for primary variations correctly because the station 

whose data are used in the analysis is high-latitude. The amplitude of primary variations for the station is 

high and can often be comparable with barometric effect, considering that the given time range includes 

several years (2007–2014). 
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CONCLUSION 

 

We have shown that at the station Mirny where wind speeds are often high, the absolute error in 

determining variations may run to 2–4 %. Thus, to acquire accurate data, we should always recalculate 

barometric effect with respect to dynamic wind effect. To reveal the Reynolds number dependence of 

aerodynamic coefficient, the number of events to study must be increased and the range of wind speeds 

considered must be expanded. Besides, it is of great importance to examine dynamic effects for other polar 

detectors, first for the neutron monitor Mauson where the highest regular wind flows are observed. It is also 

vital to use data from mountain detectors that have radically different air flow conditions. 
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