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__________________________________________________________________________________ 

 

A chromospheric telescope is an important instrument for synoptic observations and solar research. After 

several decades of observations with the chromospheric telescope at the Baikal Astrophysical 

Observatory, a need arose to improve the characteristics of this telescope and filter. A new reimaging 

lens to produce full-disk solar images 18 mm in diameter at the CCD camera Hamamatsu C-124 

with a 36×24 mm detector (4000×2672 pixels) was designed and manufactured to replace the out-of-

operation 50×50 mm Princeton Instruments camera. A contrast interference blocking filter and new 

calcite and quartz crystal plates were made and installed instead of damaged ones in the Hα birefringent 

filter (BF), manufactured by Bernhard Hallе Nachfl. The optical immersion in the filter was changed. All 

telescope optics was cleaned and adjusted. We describe for the first time the design features and their 

related BF passband tuning. The wavefront interferograms of optical elements and telescope as a whole 

show that the wavefront distortion of the optical path is within 0.25 λ. The BF and prefilter spectral 

parameters provide high-contrast monochromatic images. Besides, we give examples of solar 

chromospheric images in the Hα line core and wing. 

 

Keywords: Solar telescope, birefringent filter, interferometric measurements. 

_______________________________________________________________________________ 

 

INTRODUCTION 

 

In 1980, SibIZMIR devised and manufactured the first domestic telescope for Нα filter observation 

of the chromosphere of the full solar disk with spatial resolution of about 1″ [Banin et al., 1982].  

 

Main parameters of the chromospheric telescope and filter 

Diameter of the main lens  180 mm 

Equivalent focal distance 5432 mm 

Non-vignetted field of view 34 arcmin 

Solar image diameter 50 mm 

Birefringent filter, manufacturer Bernhard Halle Nachfl. GmbH 

Passband wavelength λ 6563 Å 

Passband half-width 1 or 0.5 Å 

Passband shifts within ± 1 Å. 
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Over a period from 1981 to 1999, 50 mm solar images were taken using an 80 mm film. The film 

archive is kept in the Institute of Solar-Terrestrial Physics SB RAS. In 2000–2002, the images were 

captured by a Princeton Instruments CCD camera with a 50×50 mm matrix detector (2048×2048 pixels) 

[ftp://ftp.iszf.irk.ru/h_alpha]. Since 2004, because of the camera failure, the images were obtained 

manually with a Konica Minolta DiMAGE A2 8MP Digital Camera (3264×2448 pixels). The small camera 

view (about 17 mm) allowed us to observe only individual active regions. To take full-disk images by a new 

automatic Hamamatsu С9300-124 CCD camera with a 36×24 mm detector (4000×2672 pixels), we 

temporally installed a commercial lens that produced 18 mm solar images. However, it did not provide 

high-quality images; hence the need for a new reimaging lens. Moreover, in images there emerged areas 

with different center-to-limb brightness, whose sharp jump pointed to instrumental origin, as well as dark 

points in the field of view and drop-shaped defects at the field edge. They had been caused by defects 

arising in the optical stack of the birefringent filter (BF) and in the prefilter. To correct the defects, we 

had to repair and change BF polarization elements. Despite the relatively clean Baikal atmosphere, the 

telescope optics over the 35-year period of year-round operation were covered with dust from the nearest 

buildings under construction and with soot from forest fires. We had to completely dissemble, clean the 

teleobjective and other optics of the telescope, and readjust the entire telescope.  

 

DESCRIPTION OF THE TELESCOPE 

 

The telescope and its optical scheme are shown in Figure 1. One of the conditions for successful operation 

of the telescope – filter complex was the compliance of its optical scheme for image construction with BF 

installation requirements largely in order to maintain the emission monochromaticity, specified by BF 

parameters, and to provide the required resolution over the entire solar disk.  

 

Particular original design solutions for optical elements and some other essential unites of the 

chromospheric H telescope are presented in [Klevtsov, Trifonov, 1980].  

 

BF – the most important element of the chromospheric telescope – is a unique instrument that costs 

as much or even more than the telescope. The clear aperture of the BF optical stack is 28 mm; the length, 

190 mm; the filter field of view, ±2.5° with allowable passband shift of 0.05 Å. These parameters 

suppress appetite for installation of the filter into a large aperture telescope for full-disk observation with 

the highest, less than 1′′, resolution [Klevtsov, 1984]. It was just this filter for which we calculated the 

optical scheme and manufactured the telescope to capture full-disk monochromatic solar images at spatial 

resolution of about 1 with allowance made for resolution characteristics of emission receivers (motion 

picture films, CCD matrix). 

 



Chromo

F

 

W

manu

schem

calcite

them 

have b

 

A

a narr

and r

reflec

 

B

wavef

Halle 

reveal

that h

outsid

 

T

limite

the pa

teleob

the te

the im

to inf

telece

 

T

and th

ospheric telescop

Figure 1. Chrom

We did not ta

factures soug

matic solutions

e crystals requ

for a medium

been develope

An interferenc

rowband interf

reflects all th

cted from the f

Before the “fi

front of BF an

filter of the S

led wavefront

had been optic

de of the BF cr

Teleobjective a

ed to the use o

avilion dome.

bjective. A pri

lescope tube 

mage of pupil 

finity and form

entric beam pa

The telescope 

his beneficial

pe of Baikal Astro

mospheric teles

ake on an inv

ght to design B

s, birefringent

uired for large

m-quality filter

ed. 

ce filter (IF), a

ference filter, 

e emission b

filter balances

first light” of 

nd IF. Spectral

Sayan Solar O

t distortions. T

cally polished

rystal stack. 

and field lens

of a long focal

 The short le

incipally new 

[Banin et al., 

created by the

ms in the mid

ath. This provi

is designed to

l feature enab

ophysical Observ

    

cope of the Bai

verse task to 

BF with extre

t crystals, and

e aperture filte

r. The crystals

a prefilter com

transmits ligh

ack through 

s the outside h

the chromosp

 characteristic

Observatory [S

They were dim

d and retouche

. The calculat

l-length lens: 

ngth of the o

idea was to in

1983а]. The 

e negative com

ddle of the fil

ides homogen

o produce a hi

bles us to use

vatory. New light

84 
 

ikal Astrophysi

work out a 

eme character

d by processin

ers are rare in 

s may be kept 

mprised of a m

ht only in a na

the telescope

heat flux and d

pheric telesco

cs of BAO BF

Skomorovsky

minished by a

ed to compen

tion of the opt

the telescope

objective unit 

install the field

focal distance

mponent of th

lter an interm

neous spectral 

igh-quality im

e for the tele

cal Observatory

filter for the 

ristics determ

g and control 

nature and if 

in reserve unt

metal – dielectr

arrow spectral

e lens. Inside

decreases temp

ope, we exam

 were similar 

, 1967]. In th

a special labor

nsate these dis

tical scheme a

should be no

of the telesco

d lens in fron

e of the field 

he lens. The fi

mediate solar i

composition 

mage in the foc

eobjective onl

y and its optical

finished tele

ined by curre

capabilities. L

available it is 

til new schem

ric – metal (M

region with a

illumination 

perature gradi

mined spectral

to those repor

e crystal stack

ratory-process

stortions. The

nd the choice 

o more than 4 

ope is due to 

t of the prima

lens is equal 

eld lens transf

image 20 mm

of all image p

cal plane only

ly two single

al scheme 

escope: in 197

ently available

Large homoge

 unreasonable

mes and techno

MDM) heat filt

a central wave

n of lenses by

ients in lenses

l characteristic

rted for the Be

k and BAO B

sed transparen

e plate was in

e of lens design

m long to fit 

the two-comp

ary image to s

to its distanc

fers the pupil 

m in diameter 

points. 

y in one wavel

e-lens (uncem

 

70-80s 

e filter 

eneous 

e to cut 

ologies 

ter and 

elength 

y light 

. 

cs and 

ernhard 

BF, we 

nt plate 

nstalled 

n were 

within 

ponent 

shorten 

e from 

image 

in the 

length; 

mented) 



V.I. Skomorovsky, G.I. Kushtal, L.S. Lopteva, V.A. Proshin, V.D. Trifonov, S.A. Chuprakov, V.A. Khimich 

85 
 

components, positive and negative, making them from one material and with radii of curvature that are 

equal in size but different in sign. The latter is very favorable for the mutual control of radii of curvature 

and lens surface shape when manufactured.  

 

The lens reconstructs and enlarges a solar image so as not to lose the resolution expected of the 

telescope on film and then on matrix. If we accept that the actual resolution of film coating with relatively 

high resolution of 200 line/mm for low-contrast chromospheric structures is 30 line/mm, a solar image 

should be no less than 50 mm. This roughly corresponds to the resolution of 1.3″. 

 

In the telescope scheme, the problems of control and adjustment have been successfully solved: the 

main lens and zooming lens were corrected for spherical aberration, thus providing independent control of 

each component in the autocollimation scheme with a plane mirror. We virtually eliminated the entire 

telescope system from spherical aberration, coma, and astigmatism. The tolerances for radii, thicknesses, 

inter-lens distances, and refractive indices of lenses are quite low. High tolerances exist for decentration 

of teleobjective, i.e. for wedge, rotation, and displacement of the lenses perpendicular to the optical axis 

[Klevtsov, Trifonov, 1980]. Adjustment of lenses in the telescope (tilt, displacement of lenses) was 

controlled using interference images in the lenses with the aid of a laser. The wavefront of the 

teleobjective and telescope after the first assembly with the filter optical stack simulator, which was 

installed instead of BF and transmitted laser light, was tested in the autocollimation scheme. Figure 2 

shows wavefront interferograms of the teleobjective and telescope. 

 

Observational materials on the solar chromosphere obtained with the telescope, their processing and 

interpretation are reported in research papers and theses by ISTP SB RAS and other researchers [Banin et al., 

1983b; Banin et al., 1986; Borovik, Myachin, 2002, 2010; Golovko et al., 2002; Batmunkh et al., 2011; 

Borovik et al., 2014; Konyayev et al., 2015]. 

 

MODERNIZATION OF THE TELESCOPE IN 2015 

 

Since the CCD camera was changed to another one with a matrix half as large, we had to calculate 

and make a new reimaging lens because the temporary commercial lens in use did not produce a high-

quality image. Fading of film coatings of the MDM heat filter, installed before BF, in the solar beam 

caused image brightness to vary across the field of view. It was immediately obvious that this was due to 

inhomogeneity of the prefilter passband.  

 

In addition, we discovered defects in BF polarization elements – cement defects and cracks. The 

chromospheric telescope operating for many years, its optics was brought out of center, the filter appeared 

to be displaced, and edge defects of its optical stack also appeared within the field of view.  
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Into the chromospheric telescope of the Baikal Astrophysical Observatory, we put a B. Halle Нα filter of 

younger, 1968, generation. Until 1980, it worked at the Horizontal Solar Telescope. Such filters are still 

exploited at many observatories. We utilize the BAO filter to describe the method adopted to tune the filter, 

present the optical scheme, main blocks, and kinematics of the filter (Figures 3, 5). Features of certain elements 

and stages of the optical stack of this filter as well as schemes of filters known at that time are described in 

[Skomorovsky, Ioffe, 1980]. 

 

In B. Halle filters of this generation, optical stack elements, except for film polarizers cemented 

between glasses, were assembled by immersion. This facilitated disassembly of the optical stack. Over the 

35-year period of the B. Halle filter operation at the chromospheric telescope, BF has been repaired at 

BAO several times: we removed the blocking of the line-shifter mechanism, changed the prefilter fading 

owing to the heating in a beam as well as the external polarizer and polarizers inside the optical stack, 

which gradually faded owing to solar radiation. We established that immersion by which the crystal 

elements were assembled could contact with the cement layer of old or newly installed film polarizers. It 

gradually penetrated along the perimeter between protective glasses, producing cement defects and 

turbidity in the polarizers. The complete disassembly of the optical stack to replace the polarizers 

necessitated the production of new quarter-wave phase plates for the line-shifter because they had been 

made not from quartz but from crystalline mica (3, 11, 41, Figure 3). The very soft mica plates broke 

down when disassembled and cleaned, and needed replacing. It was found out that the wavefront 

distortions discovered in the filter and corrected by a retouched plate in "first light" were caused by the 

deformation of thin glass plates (2, 12, and 42, Figure 3) installed outside of the optical stack to protect 

the mica quarter-wave plates. We replaced these plates as well as calcite plates damaged by severe 

overheating of the filter owing to the out-of-order thermoregulator.  

 

Manufacturing BF crystal plates is a process in which during optical polishing it is necessary to ensure 

pinpoint accuracy of thickness of the plate, parallelism and flatness of its surface. For the Iceland spar, the 

production tolerance is 0.05 µm for each parameter. Figure 4 shows opticians at work. Not every highly-

qualified optician can make new calcite plates by hand with the required tolerance. 

 

We have manufactured a new crystalline quartz plate 1.6 mm wide with edge digs within the field of 

view. We knew about the defect (the B. Halle company had an insufficient number of good crystals) but 

did not change the quartz plate because the digs were out of a solar image.  

 

By now, all external cemented polarizers have been changed to immersion-neutral polaroid films 

without protective glasses. As a result, the optical stack became shorter by 20 mm. The filter optical stack 

was cleaned of black dots (dust), reassembled, and “pumped” in immersion in vacuum to remove air bells 

(cement defects) from the field of view. The immersion-reflection index (nd=1.578) is close to mean 

crystal-reflection indices for ordinary and extraordinary beams. Immersion reduces light losses due to 

Fresnel reflection by crystals and polarizers and compensates wavefront distortions caused by imperfect 

surfaces of the stack plates numbering more than 100 in the filter (Figure 3)! 
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between lenses. When reflection glares from the lenses are situated near the screen aperture, they are 

precisely centered at the aperture by tilting the lenses; and interference images are displaced and centered by 

parallel displacement of the lenses. If centers of three images cannot be matched by changing the negative-

lens tilt, it is necessary to displace the lens in the barrel toward matching of the images by changing spacers. 

The screen (Figure 16, c) exhibits three systems of Newton interference rings: two from the lenses and one, 

wider, from surfaces of the air gap. The latter reacts to vibrations in a building and air turbulence in it. With 

required tolerances for centering of the lens, the admissible spacing between image centers is no more 

than 0.5 mm at a distance of 2 m from the lens to the screen [Klevtsov, 1987]. 

 

STUDYING THE WAVEFRONT OF THE TELEOBJECTIVE 

 

In focus of the teleobjective, we set unequal-arm interferometer 10 (see Figures 13, 14) centered at the 

same apertures of the diaphragms on barrels of the teleobjective lenses; and on the side of the positive lens, we 

install reference flat mirror 6 to control the wavefront in the autocollimation scheme. Note that the teleobjective 

was adjusted using special laser 5 instead of interferometer laser 10 (Figure 13) because in the beam splitting 

cube of the interferometer there occurred additional reflection glares impeding the adjustment. 

 

Wavefront interferograms in the double beam path were obtained for a point on the axis of the 

teleobjective with a distance of 345.5 mm between the lenses. With this distance, the teleobjective – field 

lens system produces an intermediate solar image in the middle of the BF optical stack. Figure 17 shows 

interferograms obtained in 2015 before disassembly (b) and after cleaning and assembly (c). For 

comparison, we give the previously presented wavefront interferogram (Figure 2) of the lens after the first 

assembly in 1980 (Figure 17, a). Below are calculated wavefront profiles for axial points and at a distance 

of 16 arcmin (d).  

 

Over the 35-year period of the telescope operation, the adjustment and wavefront of the teleobjective 

have changed little, if at all. The newly adjusted lens shows the wavefront not worse than before 

disassembly, and even closer to the calculated value. Differences between interferograms can be caused 

by airflows in the building and by temperature gradients on the lenses that appear despite air blowing of 

the control zone. 

 

ADJUSTMENT OF THE WHOLE OPTICAL SYSTEM  

OF THE CHROMOSPHERIC TELESCOPE 

 

On the optical bench, we set the telescope tube without optics (Figure 18) assembled from the 

following blocks: teleobjective flange 1, declination box 2, filter 3, and reimaging lens 4 with the camera. 

On the side of the reimaging lens we fix the unequal-arm interferometer with the screen. The camera is 

not shown in the figure. In the front flange of the telescope and in the mount of the reimaging lens barrel, 

we set diaphragms D1, D2 with a central aperture 1–2 mm. These apertures are reference for tracing of 

the future optical axis of the telescope and for installation of teleobjective optics, field lens, BF, 

reimaging lens, and CCD camera.  
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The beam splitting cube of the interferometer is changed to a mirror prism for the adjustment period to get 

rid of secondary reflection glares. By moving the interferometer, we direct a laser beam from the prism through 

the aperture in the screen to the telescope and match it with the telescope axis through reference apertures of 

the diaphragms. 

 

The optical elements are set and adjusted according to their position in the optical scheme, starting 

with the teleobjective.  

 

The teleobjective. The teleobjective, assembled and adjusted in its barrel, is fixed in the front flange 

of the telescope. By tilting the whole barrel, we adjust an interference image of reflection glares, which 

reflected from surfaces of the teleobjective lenses, to the center of the interferometer screen. 

 

The field lens is installed into its barrel. In this case it appeared that the optical center of the field 

lens did not coincide with the center of the barrel. We had to turn the mount of the barrel and shift the 

field lens along with the barrel by 1 mm to make the reflection glares reflected from its surface be within 

the screen center. 

 

BF. If the filter is set correctly, a laser beam should come to the center of the protective glass of the BF 

optical stack and be reflected to the interferometer screen center. We gave surfaces of protective glasses in the 

filter an anti-reflection coating for the red spectral region. To enhance brightness of the reflected laser beam, 

we screwed a glass in barrel (mirror or cut filter) into a window flange of the filter. The surface of the glass had 

been made parallel to the BF protective glass. Notice that the surface of the entrance IF should also be set 

parallel to the entrance (exit) window of the crystal stack. BF is brought to the optical axis and to 

autocollimation by longitudinal and inclined movements of a matching site. After the adjustment, BF is taken 

out from the matching site because its passband does not transmit emission in the 6328 Å line. To control the 

wavefront of the telescope in this line, we replace BF with a simulator made from a transparent glass.  

 

The reimaging lens. The mount of the lens barrel with the installed base diaphragm D2 is 

preliminarily set perpendicular to a laser beam, using autocollimation from an auxiliary mirror. The 

objective lenses themselves and the lens barrel were well centered and after installation of the barrel 

to the mount fell in the screen center.  

 

The landing flange of the CCD camera (not shown in the figure) was adjusted to the axis of the 

telescope, using a laser beam. 

 

WAVEFRONT OF OPTICS OF THE CHROMOSPHERIC TELESCOPE  

AND “NEW LIGHT” 

 

Wavefront interferograms of the telescope (Figure 19) were obtained in the autocollimation scheme 

with the reference flat mirror. Before exposure, optics had been «kept» for several hours to equalize 

temperature gradients. The building where all the optical elements were located was blown by a fan.  
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National Solar Observatory (the USA) [http://www.nso.edu/ IAU-Com12/resources, 

http://www.hida.kyoto-u.ac.jp/ Smart/]. You can see that in the image quality the BAO chromospheric 

telescope is highly competitive with telescopes of the worldwide network. Moreover, opportunity exists 

to further increase its resolution by means of a higher resolution matrix. 

 

We thank C.Sc. (Phys.&Math.) A.A. Golovko, A.A. Zhdanov not only for providing us with 

solar observations to illustrate operation of the telescope but also for the image quality analysis 

contributing to the modernization, as well as the head of the Baikal Astrophysical Observatory C.Sc. 

(Phys.&Math.) A.V. Borovik – the main initiator and organizer of this great work – and the head of 

the machining department V.S. Fedotov who supervised the fine adjustment of the telescope units 

and the manufacture of technological devices for treating and controlling the telescope optics. 
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