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_____________________________________________________________________________________ 

 

This paper considers anomalies in the magnetotelluric field in the Pc3 range of geomagnetic pulsations. 

We report experimental data on Pc3 field recordings which show negative (from Earth’s surface to air) 

energy fluxes Sz<0 and reflection coefficients |Q|>1. Using the model of inhomogeneous plane wave 

(Chetaev’s model), we try to analytically interpret anomalies of energy fluxes. We present two three-layer 

models with both electric and magnetic modes satisfying the condition |Qh|>1. Here we discuss a 

possibility of explaining observable effects by the resonance interaction between inhomogeneous plane 

waves and layered media. 

 

Keywords: Magnetotelluric sounding, geomagnetic pulsations, impedances of layered media, mathematical 

experiment. 

_____________________________________________________________________________________ 

 

INTRODUCTION 

 

Experimental studies of a magnetotelluric (MT) field reveal a wide range of effects inconsistent with 

the model of homogeneous vertically-incident plane wave [Tikhonov, 1950]. First of all, it is a generally 

observed horizontal inhomogeneity of the MT field that was traditionally attributed to the presence of 

horizontal inhomogeneities of a medium. In 1969, Prof. Dmitry Nikolaevich Chetaev [Chetaev, 1969] 

offered a model describing locally the MT field in the vicinity of a point of observation of an 

inhomogeneous plane wave propagating horizontally along Earth’s surface. “The possibility for 

describing locally a field of just a plane wave,” authors [Chetaev et al., 1980] wrote, “stems from its 

continuity. In the sufficiently small vicinity with linear spatial variations in field components, it is natural 

to approximate the field by the plane wave determined by these linear increments of complex 

amplitudes.” Subsequently, Chetaev developed a directional analysis. Background and history of the 

directional analysis (Chetaev’s model) are described in detail in [Chetaev et al., 1980; Chetaev, 1985]. Its 

key idea is to study phase velocities of horizontal propagation of MT field, spatial damping, wave 

propagation direction (directional angle), elements of polarization ellipses, and apparent resistance of a 

section by determining complex components of wave vector kх, kу from Maxwell equations (in a layer 

with conductivity σ). The directional analysis gives an instrument for separating the complete MT field 

into five-component h- (Нzz≠0) and e- (Ez≠0) modes. Careful experiments [Chetaev et al., 1980] explained 

the horizontal inhomogeneity of MT field not by the effect of horizontal inhomogeneities of a medium 

but only by properties of an inhomogeneous plane wave realized by superposition of horizontally 
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propagating inhomogeneous h- and e-modes. Although the answer to the question about the nature of 

the Еz component is still ambiguous [Anisimov et al., 1993], specialists already cast no doubt on the 

possibility of applying the directional analysis to high-resistance sections.  

 

There are at least two effects in the MT field that remain theoretically unjustified. They are an 

unusual direction (from Earth’s surface to air) of the vertical component of Poynting vector Sz and 

anomalies of the reflection coefficient Q. Such facts were found in a number of experimental studies 

(see below). The paper examines anomalous energy fluxes Sz<0 and reflection coefficients |Q|>1 in 

terms of the directional analysis. 

 

Table 1. Energy parameters of the MT field of geomagnetic pulsations. Volchinka, July 1988. 

Number Time interval  Т, s  ReSz  ImSz  |Qh|  |Qe| 

15-  11.14.37–11.15.05  24.7  –44.70  6.70 0.95  1.4 

15  15.36.14–15.37.02  23.7  –102.00  49.40 –  – 

15  16.29.10–16.30.04  81.0  1.14  –1.86 0.73  4.5 

16  0.357.40–04.02.03  95.0  41.90  –38.80 0.59  1.4 

 

Indeed, with a plane electromagnetic wave incident on the boundary of a horizontally stratified 

medium, an instantaneous vertical energy flux Sz(t)=[ReE(t), ReH(t)]z, which probably has no definite 

physical meaning, can be both positive and negative [Stratton, 1948]. However, the time average value  

 1/ 2Re , ]*[ ,z zS  E H  (1) 

(where * is a sign of complex conjugation) defining the downward direction of energy propagation should 

remain positive. Conditions 

отр пад| /, 1,|0z AS Q А    (2) 

where Q is a reflection coefficient, Аinc and Аref are incident and reflection amplitudes, are beyond 

questions in a 1D model.  

 

The situation when both inequalities (2) are not fulfilled is examined in [Savin, Izrailsky, 1991]. 

By analyzing results of the mathematical modeling with the use of Chetaev’s model, the authors found 

a three-layer model for which the modulus of electric mode reflection coefficient |Qe|>1. Still, the 

question about the magnetic mode remained open. Studies results of which are presented bellow show 

that there is a class of so-called resonance models with both the electric and magnetic modes exceeding 1, 

i.e. the condition |Qh|>1 is met. This paper reports results of numerical calculations of reflections of 

magnetic and electric modes in three-layer (resonance) models. We discuss a question of how appropriate 

it is to interpret directional magnetotelluric sounding (MTS) data by a method of downward analytical 

continuation of reflection coefficients [Chetaev et al., 1984].  
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EXPERIMENTAL FACTS 

 

The possibility for obtaining anomalous (from Earth’s surface to air) values of Sz<0 was first 

recognized in [Shaub et al., 1976]. The authors tried to explain the discovered paradox by motion of local 

magnetic and electric dipoles or by any other instability. Anomalous energy fluxes for a wide range of 

individual Рс3, Рс4 geomagnetic pulsations [Guglielmi, 1973] were studied by Shaub [Shaub, 1982] 

using observations made in the village of Tatyanovka (Primorsky Territory). Such a situation was 

observed during field studies in the village of Volchinka in northern Sakhalin in 1991. Employing 

formalism of the directional analysis [Chetaev, 1985], the authors of [Savin et al., 1991] discovered not 

only negative vertical energy fluxes for Pc3 pulsations but also anomalous, exceeding 1, moduli of 

reflection coefficients for partial waves of electric |Qe| and magnetic |Qh| types (Table 1). The experiment 

in synchronous registration of the MT field at three observation points on the Ukrainian crystalline shield, 

which was carried out in 1974 under the direction of Chetaev, found the same anomalies. This is 

confirmed by data given in Table 2 that presents a sample of anomalous moduli of reflection coefficients 

|Qe| and |Qh| for 14 individual Pc3 pulsations numbered as in Table 1 (50 pulsation in total) from [Chetaev 

et al., 1980]. Calculations were performed for specific resistances (800, 1000, and 1200 ohm·m) of the 

upper layer of the section.  

 

Table 2. Moduli of Pc3 reflection coefficients as deduced from observations on the Ukrainian crystalline shield. 

Pulsation  
number 

R01=800  
ohm·m 

R02=1000 
ohm·m 

R03=1200 
ohm·m 

Qe  Qh  Qe  Qh  Qe  Qh 

1  0.481  1.020  0.480  1.020  0.470  1.020 

5  0.661  2.090  0.661  2.070  0.661  2.060 

13  0.557  1.760  0.557  1.670  0.557  1.750 

17  0.538  3.390  0.538  3.470  0.539  3.550 

18  0.541  3.260  0.540  3.270  0.539  3.270 

21  0.418  1.280  0.416  1.280  0.413  1.290 

22  0.394  1.050  0.391  1.050  0.413  1.050 

40  0.395  1.290  0.392  1.290  0.399  1.290 

41  0.396  1.230  0.366  1.230  0.361  1.240 

43  0.370  1.070  0.367  1.070  0.364  1.070 

45  0.395  1.360  0.392  1.360  0.389  1.370 

46  1.040  1.910  1.040  1.910  1.040  1.810 

47  0.286  1.290  0.287  1.290  0.288  1.308 

50  0.293  1.070  0.291  1.070  0.289  1.070 

 

A question arises whether the facts represent a natural phenomenon or a systematic experimental 

error. The former assumption is supported by the fact that the MT-field energy anomalies were found by 

independent researchers under different geoelectric conditions. Nevertheless, we should not reject the 

second assumption. 
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Failure of energy conservation law (2) is incompatible with properties of a homogeneous 

(vertically incident) plane wave; therefore, when interpreting the MT field using the Tikhonov–

Cagniard model, we should reject all “inconvenient” geomagnetic pulsations (e.g., those listed in 

Tables 1, 2). If the experimental error is excluded, we face a situation that requires theoretical 

explanation.  

 

Is it admissible to automatically apply the energy laws of vertically incident (homogeneous) plane 

waves to horizontally propagating (inhomogeneous) plane waves? This question is important for practical 

applications. It suffices to remember that the method of interpreting the MT field by downward analytical 

continuation of reflection coefficients [Chetaev et al., 1984] relies just on the fulfillment of conditions 

0zS   and |Qe, h(h)|=1 as limiting and determining depths of occurrence of geoelectric layers at z=h. 

 

These conditions are used to reject individual geomagnetic pulsations unsatisfying the said 

conditions. In view of the results of the study of the magnetic mode [Savin, Izrailsky, 1991], acceptance 

of the validity of negative energy fluxes for the electric mode and anomalous reflection coefficients |Qe| 

limits capabilities of the interpretation method. It is therefore interesting to try to explain the energy 

anomalies for the magnetic mode, using Chetaev’s model. 

 

ENERGY FLUXES IN CHETAEV’S MODEL 

 

Write the equations for real ReZe, h and imaginary ImZe, h parts of electric and magnetic impedances 

[Chetaev, 1985] as 

ReZe={R+[R2+(ωµσ–J)2]1/2}1/2. (3) 

ImZe= –(ωµσ–J)/{R+[R2+(ωµσ–J)2]1/2}1/2. (4) 

ReZh=(ωµσ–J)/[R2+(ωµσ–J)2]1/2{R+[R2+(ωµσ–J)2]1/2}1/2 (5) 

ImZh=–{R+[R2+(ωµσ–J)2]1/2}1/2/[R2+(ωµσ–J)2]1/2. (6) 

Here R=Re(k2
х+k2

y), J=Im(k2
x+k2

y); kх=αх+iβx and kу=αy+iβy are horizontal components of the 

complex wave vectoг k.  

 

Formulas (3)–(6) show that in the vicinity of Jкр=ωµσ the partial impedances change abruptly, and 

the functions ImZe and ReZh reverse sign; if J>Jкр, 

ImZe>0, ReZh<0. (7) 

In a diffusion approximation, the Poynting theorem [Stratton, 1948] takes the form 

divS=–1/2σ |E |2+1/2iωµ|H |2, (8) 

where the Poynting vector is S=1/2[E, H*]. 

 

If a conducting region of volume v is bounded by a closed surface Σ, Joule loss 
2

1/ 2
v

dv  E  
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should be compensated by an energy flux nRe ,S d


  directed into the volume. Therefore, applying 

the Causs theorem to relation (8)  

2 2

ndiv 1/ 2 1/ 2 ,
v v v

Sdv S d dv i dv


          E H  (9) 

we get 

n nRe 0, Im 0.S d S d
 

       (10) 

From (10) it follows that the closed-surface average normal vector component S, <Sn> without field 

sources should satisfy inequalities 

n n0, ImR 0.e SS

      (11) 

If a half-space is taken as volume V and the Z axis is downward, we have 

0, ImRe 0.z zSS      (12) 

Clearly, the first of the inequalities is in accord with notions about downward energy distribution in 

the direction of a wave incident to z=0. 

 

As indicated above, the directional analysis is based on separation of the total MT field into 

magnetic and electric partial waves (modes). Hence, it is natural to examine the energy fluxes Sz
h and Sz

е 

individually for each of the h- and е-modes. Heeding the equations for the partial impedances Ze, h (see 

(21), [Chetaev, 1985]), we derive Ex
e, h=Ze, hHy

e, h, Ey
e, h=–Ze, hHx

e, h. 

 

Given Formula (1), for partial waves of e and h types we have  

Sz
e,  h=1/2Ze,  h(|Hx

e,  h|2+|Hy
e,  h|2). (13) 

Thus, signs of real and imaginary parts of the vertical component of the complex Poynting vector 

Sz
e,h for both the types of partial waves should coincide with signs of the respective parts of partial 

impedances Ze, h. 

 

Founding on (12), we conclude that for any J the following inequalities should hold 

ReZe,  h≥0, ImZe,  h≤0. (14) 

These inequalities correspond to functions (3)–(6) throughout the domain of definition of J except 

for ImZe and ReZh such that at J>Jкр they should satisfy conditions (7). Consequently, for J>Jкр 

h e
n nRe 0, Im 0,S S   (15) 

i.e. both inequalities (12) are violated. 

 

Thus, with an inhomogeneous plane wave propagating in a layered conducting medium, we face 

a paradoxical situation such that at J>Jкр the partial magnetic wave energy flows upward Re 0h
zS  , 

contrary to intuitive notions. In addition, Im 0,e
zS   i.e. the second of inequalities (11) is violated. 
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Our analysis of the experimentally found anomalous energy fluxes of Pc3 geomagnetic pulsations 

allows us to theoretically explain at least some of the data. 

 

Furthermore, let us try to answer a question of how correctly conditions (12) were derived.  

 

To do this, we used Causs theorem (9) applied to infinite volume (half-space). For an 

inhomogeneous plane wave at kh, у→–∞ the integrand tends to infinity because 

    ,, exp exp , 0,x y x y x yi k x k y x y            E H     

and their respective integrals diverge. Hence, it is incorrect to apply the Gauss theorem in the model of 

interest; and it seems that the «natural» downward direction of the energy flux 0zS   does not follow 

from the Poynting theorem. 

 

It is therefore reasonable (and is likely to be the only correct way) to rely only on the conclusions 

drawn from inner laws of Chetaev’s model, specifically on properties of partial impedances of layered 

media resulting in conditions (15). 

 

But the anomalous energy fluxes themselves seem to defy common sense. Indeed, the MT field falls 

from the top downward because its sources are generally thought to be at the top, i.e. in Earth’s 

magnetosphere and ionosphere; and the direction of the energy flux of this filed is directly opposite. Let 

us try to provide at least some insight into the problem under study. 

 

The questions concerning the electromagnetic field energy flux are known to be perhaps the most 

difficult in classical electrodynamics. If the Poynting theorem expressing the energy conservation law as a 

complete integral [Stratton, 1948] is unquestionably valid, the Poynting vector S is determined up to an 

arbitrary solenoidal vector a, i.e. ambiguously. “The vector S is only a possible expression for energy 

flux,” authors of [Feynman et al., 1977] wrote, “...We have to admit that we are still unaware of how 

energy is distributed in the electromagnetic field... It is evident that everyday intuition deceives us.” We 

believe that any theoretical research into electromagnetic field energy fluxes will have “original sin” – 

energy flux uncertainty. It can therefore lead to a discussion that has no prospect of being ever concluded. 

 

NUMERICAL COMPUTATION OF THE REFLECTION COEFFICIENTS  

 

Let us examine the behavior of reflection coefficients in Chetaev’s model. 

 

It is convenient to bring the equations that determine the dependence of partial potentials Ue, h on 

depth z [Savin, Izrailsky, 1986] into the unified form 

(zUʹ/η)ʹ–ηZ0U=0, (16) 
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where 2 2 ,x yk k i      and Z0 is the partial specific impedance. Input partial impedances Z for е- and 

h-type waves can equally be expressed through the partial potential U  

Z=–Z0Uʹ/(Uη). (17) 

Inside each layer, σ=const, therefore the solution of (16) takes the form 

U(z)=Ae–η z+Beηz, (18) 

where А, В are amplitudes of incident and reflected waves.  

 

Introduce [Chetaev et al., 1984] a reflection coefficient Q(z) at z representing a complex ratio of 

the upward-wave amplitude to the downward-wave amplitude, 

Q(z)=B/Aexp(2ηz). (19) 

Using (17), obtain the following relation between the reflection coefficient Q(z) and the partial 

impedances Z and Z0, Z/Z0=[1–Q(z)]/[1+Q(z)], then  

Q(z)=(1–Z/Z0)/(1+Z/Z0). (20) 

Since the input (complete) impedance Z continuously depends on z, and the specific impedance Z0 

has discontinuities on the boundary of the layers, Q(z) is a piecewise continuous function. 

 

Formulas (19)–(20) along with the recurrence relations [Dmitriev, 1970] for partial impedances of 

a layered medium allow us to compute the reflection coefficient at any point of the medium. 

 

In the case of a homogeneous plane wave (βх=0, βу=0), the reflection coefficient meets the inequality  

|Q(z)|<1. (21) 

Let us see whether this inequality holds for an inhomogeneous plane wave. 

 

For a two-layer medium, it is easy to analytically study the inequality 

   i i i i i
(0)1 (0)2 (0)1 (0)2/ 1,Q Z Z Z Z    (22) 

where Z(0)1 and Z(0)2 are specific partial impedances in the first and second media, i=e, h. Omitting the 

cumbersome calculations, we focus on the result. At R>0, the modulus of the reflection coefficient of both 

the modes is always  1. Still, at R<0 both moduli of the reflection coefficients can be greater than unity.  

 

MATHEMATICAL EXPERIMENT 

 

Furthermore, let us consider geoelectric models for which we made numerical calculations in 

dimensionless variables. As could be expected, the energy conservation law |Qe, h|<1 held in most cases. 

Nevertheless, Savin and Izrailsky [Savin, Izrailsky, 1991] examined a model for which the opposite 

inequality |Qh|>1 holds. However, the question concerning the magnetic mode has remained open so far.  
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Let us try to explain the results both in terms of the infinite energy of an inhomogeneous plane wave 

and in terms of the wave–layer system resonance. 

 

If we assume that the wave energy is finite, from |Q|>1 on the entire surface z=0 it follows that the 

reflected wave energy Wref is higher than the incident wave one Winc because Wref=|Q|2Winc. This 

contradicts the energy conservation law. However, since the inhomogeneous plane wave energy is equal 

to infinity on one of the semiaxes, e.g. as х→–∞ and βx>0 А~exp[i(αx+iβx)x]→∞, W~|A|2, there is no 

contradiction because we compare infinite values.  

 

If we suppose that the MT field varies only in a finite area of the earth’s crust, as is the case for 

the Chetaev wave, the condition Winc>Wref does not mean that for this area the energy conservation 

law does not work. In actual fact, if we bound the vicinity of the observation point (volume V) by a 

closed surface Σ, the energy inflow into the surface can come not only from the top but from the 

bottom and from a side as well (see above citations from [Feynman et all, 1977]), i.e. from fairly 

distant regions outside the area of interest with sufficiently high plane-wave energy. Then we should 

assume that the Poynting vector S changes its direction, thus providing an energy inflow into V. 

 

Let us now turn to the resonance interpretation. At |Qe, h|>1, we are likely to deal with the domain 

of geoelectric layer parameters close to values corresponding to eigenfrequencies of the layer system. 

As the resonance is approached, Q should increase infinitely.  

 

It is therefore interesting to analyze a situation arising from reflection of an acoustic wave from an 

elastic plate situated in a fluid [Brekhovskikh, 1957]. We examine free waves in the plate, i.e. such waves 

that can exist with zero (without external excitation) incident-wave amplitude. “If the incident-wave 

amplitude tends to zero,” L.M. Brekhovskikh wrote, “reflected and transmitted wave amplitudes remain 

finite, and the reflection coefficient can take any prescribed values.” There is an analogy between free 

waves in the plate and surface waves (Rayleigh waves) on the boundary of a rigid body and fluid. “In 

this case, a wave process takes place that extends along the boundary without an incident wave, i.e. we 

have a case of a surface wave” (L.M. Brekhovskikh).  

 

In our setting, we also consider a surface electromagnetic, rather than acoustic, wave with complex 

spatial frequencies. Yet parameters of discovered three-layer model 1 (ρ2=10ρ1(3)) representing 

anomalous field characteristics can be referred to a plate such that its elastic properties differ from 

properties of the fluid above and below it. Figure 1 shows that there is a narrow peak of Qh such that it 

can be attributed to a resonance peak, whereas the peak of Qe is much more flat. In this case, i.e. in 

reflection from the surface of the conductor–dielectric section, the magnetic mode comes into resonance 

with model 1. The narrow peak of Qе (Figure 2) in reflection from the dielectric–conductor boundary 

suggests that the electric mode comes into resonance with model 2.  

 

To explain the results in more detail, recall [Chetaev, 1985] that processes of propagation of 

electromagnetic fields in layered media exhibit a close analogy to wave propagation in one-dimensional 
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transmission lines comprised of two conductors with oppositely directed currents. Yet to the E mode 

corresponds a series impedance; to H mode, a shunt admittance. A reader can readily figure out the 

situation with resonance in both the cases on his/her own because it is unreasonable to consider this 

issue in this paper owing to the cumbersome calculations.  

 

CONCLUSION 

 

This paper was aimed at reviving interest to Chetaev’s model distinguished for its striking simplicity 

and elegance. Unfortunately, in recent years it has been undeservedly forgotten. We tried to unveil new 

possibilities of this model for studying the so-called energy MT-field anomalies unexplained by the 

traditional Tikhonov–Cagniard model. The mathematical experiment we conducted allowed us to explain 

the apparent violation of the law of energy conservation for the natural geoelectromagnetic field in the 

Pc3 range of geomagnetic pulsations only by structural properties of electric and magnetic modes with 

their superposition corresponding to the primary (total) MT field. The results we obtained from the 

directional analysis raise the possibility to interpret experimentally observed MT fields of a wider class 

than that provided by the traditional approach. Properties of the natural electromagnetic field, which do 

not fit into the Procrustean bed of the homogeneous plane wave model but legitimized in the directional 

MTS model, include a horizontally inhomogeneous field observed virtually everywhere, an exponential 

variations in the amplitude of Pi2 pulsations [Savin, 1986], and Pc3 geomagnetic pulsations revealing 

energy anomalies. In the interpretation using the Tikhonov–Cagniard model, all MT field variations with 

the said properties are rejected. We believe that it would be an inexcusable error for geoelectric 

researchers to ignore the enormous capabilities of Chetaev’s model that enriches traditional interpretation. 
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