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MOJIMHOMMAJIBHBII BAPUAHT 3AJJAYU CYMM-ITPOU3BEIEHUI

B pabome paccmampusaemcsi o0b6obwenue 3adauu  cymm-npoussederuu. OO0OWEHHBIL NPUHYUN OAHHOU
npobnemvl  chopmyruposarn 6 eunomese Ipoéuia-Cemepeou. Bmecmo cymmur  Munkosckozo  mmodcecms
PaccmMampusaemcs MHOX¥CeCmeo 3uauenull f(x,y) 00HOpOOHO20 nonuHoma [ om O08YX HEePeMeHHbIX X U Y,
npuxaonedcawux nooepynne myabmuniuxamuenou zpynnet G of F, nona nonodcumenvHou xapaxmepucmuxu. B

pabome NOIYYEHA HUIICHSS OYEHKA MOWHOCMU MAKOU NOIUHOMUALLHOU CYMMbL. Jlannas mema umeem npuxiadHoe
3HAYeHUe 6 meopuu UHoOpMayuu U OUHAMUKE NPU pacueme GepOSIMHOCHMEl COObIMULl, a MAaKice 8 pPAa3IUiHbIX
Memooax Kooupo8anus u 0eKOOUpOBanUsl UHGOpMayuu.

Kniouegvie cnoga: 3adaua cymm-npoussedenuil, noie 6bl4emos, Myabmuniukamuenas spynna, noozpynna.

S.A. Aleshina, I.V. Vyugin
POLYNOMIAL VERSION ON THE SUM-PRODUCT PROBLEM

This work is about the generalization of sum-product problem. The general principle of it was formulated in the
Erdos-Szemeredi’s hypothesis. Instead of the Minkowski sum in this hypothesis, the set of values f(x,y) of a
homogeneous polynomial f lin two variables, where x and y belong to subgroup G of Fy is considered. The lower bound

on the cardinality of such set is obtained. This topic has an applied value in the theory of information and dynamics in
calculating the probabilities of events, as well as in various methods of encoding and decoding information.

Keywords: sum-product problem, residue field, multiplicative group, subgroup.

Introduction

This work touches upon questions of arithmetic combinatorics, which studies simultaneously
additive and multiplicative operations on sets. One of the most fundamental questions is the
problem of sum-product subsets. The detailed description of it can be found in the paper [1]. The
problem below has numerous applications in several branches of mathematics, such as
cryptography for codes and dynamical systems. The results associated with the problem of sum-
product type in a field of positive characteristic enable us to solve the problem of estimating
trigonometrical sums over subgroups, which is particularly important for number theory. These
estimates make it possible to describe the distribution of the elements of a multiplicative subgroup
in a field of positive characteristic.

Let 4 be a finite non-empty set of elements of a ring K (for example, a finite set of integers).
Consider the sum and product of 4 with itself:

A+ A:={a+ b: ab € A} (1)
A-A:=1{a-b:ab € A} ()

Obviously, the cardinality of both these sets is at least |4|, and in general the expectation is

that it to be close to |4]|?. However, if A is closed under addition and multiplication (4 is closed to a
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subring), then the cardinality of both sets A + A and A - Acan be comparable to |4]. For the ring
of integers, the Erdos - Szemeredi’s hypothesis says that there exists a positive number £ for which
the following inequality holds:

max(|A + A, |A - A]) > |A]>~¢ (3)
for any finite subset |A| of a ring. The inequality means that there exists a positive numberC such
that max(]4 + A|,|A - A]) > C|A|*"%. This is the sum-product phenomenon: if the finite set 4 is
not close to a real ring, then the sum A + A or the product A - Amust be considerably larger than
Aand close to |4]2.

This phenomenon was not proved, however, there is Erdos - Szemeredi’s theorem for finite
set of integers which states:
max(|]A + A|, |4 - A]) > |A|}C,

where ¢ — positive constant.

Estimates for the constant © were constantly improved. If the set A © R, then best result was
proved by Solymosi based on the Szemeredi-Trotter theorem:
max(|A + A |A - A]) > |A|*/37=. (4)
Remark: Consider the analogous problem of estimating the cardinality of the set
|4 + A - Al.In the construction of this problem both additive and multiplicative operations are
applied. It is known that |4 + A - A| > |A]*/3.
In 1999 Tom Wolf (see [1]) raised the idea of looking for the phenomenon of sum-product
type in finite fields Fof prime order (such fields do not have non-trivial subrings). In particular, the

inequality (3) holds if A © Fyand 4 does not coincide with the entire field F , in the sense that
|A| < p'~? for some & > O (it is reasonable that £ should depend on &), which was subsequently
resolved positively. Now the corresponding result is known as the theorem on estimates of sums of
products for £ (later he had new proofs and refinements).

It follows from the sum-product phenomenon that if the set 4 © F,0f medium size
p® < |A| < p*®has a multiplicative structure (for example, is a geometric progression or
multiplicative subgroup), then it cannot have an additive structure: the sum A + Ais more larger
than the original set A. Further, it is concluded that sets with multiplicative structure are uniformly

distributed in the additive sense.
There are some modern results in the sum-product problem:
Theorem (Konyagin-Shkredov, Rudnev-Steven-Shkredov, 2016 - 2017)
Let A € R. Then

4
max(|A + A|,|A - A]) > |AF",
where |4]| is infinite, ¢ > 0 is an absolute constant.
Theorem  (Roche-Newton-Rudnev-Shkredov, 2016,  Askoy-Yazici-Murphy-Rudnev-

Shkredov, 2017)
Let A © E,, |A| < p®/8. Then

max(|A + A |A - A]) > |A]*F1/5,
Additive shifts of multiplicative subgroups

This problem is widely applicable in algebra, for example, in the study of additive shifts of
multiplicative subgroups.

GarciaandJ. Volochin 1988 [7],using some algebraic ideas, provedthat for any multiplicative

subgroup G € E;,G < L_li)— and any u # 0:

(p—1)3+1
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2
|G N (G + p)] < 4|G|=. (5)
D. Heath — Brown and S. Konyagin [4] simplified the proof of this fact and improved the
constants in 2000 with the help of method of S. Stepanov [6], that is extremely popular in number
theory. After that in 2012 I. Vyugin and I. Shkredov [3] generalize this fact for the number of
additive shifts:
Let G c E; - multiplicative subgroup, k = 1 — an integer, |G| > k- 22k+4. Let py,...py -
different non-zero residues and @ = GQ@Q — an invariant set such as:

2k+1
&

0€Q; ol < ((?)%‘—1)  p = 4161 (10w +1).

Then
k+1

1
216N (6 +u) N..0 G + Al < 4G+ D (I +1) |61,
1eQ
This theorem leads to the statement about the maximum of the cardinality of the intersection
of k additive shifts of subgroup:

Let
1
32k - 22008+ < |G|, p > 4klG]| (167 + 1),

Then
" E+1

G0 (G+p)0..0 6 +p)| <4k +1) (|G|2k+1-|- 1)

In other words,

1

G N (G +p)N..0 (G + pp)| < k|G|]2H%,
If 1<« k|G|« kp' B, where {a;},{Bfx} — some sequences of positive numbers and
@y, By = 0,k — o0,

Also, in that work another additive characteristic of multiplicative subgroups is considered,
namely, the cardinality of its sum and difference. The estimate (5) leads to

G + G| > |G
For any G, for which |G| « pE. Indeed, considering the cardinality of union of group G with some k
elements of group G
|G U (G + pq) V..U (G + ue)],
then it equals to
an(n + DIGE
2

from (5). If taking k = C|G |§, where € — some constant, then the previous inequality will look like:

kG| — |G N (G + py) N...0n (G + )| = k|G| —

(€ — 2¢?)|G]: + 2C|G].
The last part of the sum is linear, that can be omitted, so:
16 U (G +p) U...U (G + )| = (C — 2C?)|Gls
that means that ,
G+ G| > |G

since
IGU(G + py) V... UG+ u)| =G+ G

This result will be generalized for polynomials in Theorem 2(trivial bound).
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D. Heath — Brown and S.Konyagin proved the inequality
4
IG + G| > |G|

2
for all subgroup G, for which |G| << pz. Using the combinatorial idea, I. Vyugin and I. Shkredov
made the previous inequality stronger:

5
G2
1

logz|G]|

G + G| >

1
for all subgroup G, for which |G| « pz.

In this work the problem of the sum-product type for multiplicative subgroups is extended,
and the lower bound of the number of solutions for the set P(G,G) where G is a multiplicative

subgroup, is obtained. The obtained estimate generalizes the earlier ones (see [1, 2]). These
estimates are a corollary of author’s result if the linear polynomial P(x, y) is considered.

Preliminaries

Definition 1. Let us call the polynomial P € FE,[x, y]good if it is homogeneous with respect
to x,y and P(x, ¥) — 1is absolutely irreducible (it is irreducible over the algebraic closure of F,).
Definition 2. For a prime number p and a natural number n, let us call a groupG (n,p)-

1
admitted ifG C Fy and 100n® < |G| <p*/*
Theorem 1 (I. Vyugin, S. Makarychev). For any natural number n there exist constants
C;,C; = 0 such that for any prime number p, for any (n, p)— admitted group G, for any good

polynomial P of degree n, for any natural h < C,|G|3/2

and numbers a,,...a, € E; in different
G-cosets, there are at most

Clh2f3|G|2/3
pairs (x,y) for which P(x,y) = «, for some k. Later one of the constants in the last theorem was

found exactly: ¢, = 32n°.

Main results

Let us begin with the supporting statement:
Lemma. Let P(x,y) € E, be a homogeneous polynomial of degree n such that the

polynomial P(x,y) — 1 is irreducible over algebraic closure of F,. Then the polynomial
Q(x,¥) = P(x,y) —a, where a is a constant in F; is irreducible over the closure of F,.

Proof. For any a from F, there must be denoted by the root of the n — th power from é in the
algebraic closure of F,.The polynomial P(ax,ay) — 1 is irreducible because if
P(ax,ay) — 1 = Pi(x,y)P;(x,y),
then substituting into this equality x/a and y/a instead of x and y, then
Xy Xy

Py -1=P (- 2)P (2. 2).
i.e. P(x,y) — 1is reducible, that contradicts to the assumption. So,
PGY)

Plax,ay) — 1 = a"P(x,y) —1 =
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is irreducible. Multiplication by the constant a does not change irreducibility.
Theorem 2 (trivial bound). For any n there exist € = 0 such that for any prime number

p (n,p) — admitted group G and a good polynomial P of degree n:
IP(G,6)| > CIGI*?

Here P(G,G) is the set of all elements of F, that can be obtained by substituting all possible
elements of G as x, y.

Proof. Consider the equation P(x, v) = «. There are two cases: @ = 0 and a # 0.

1) For any @ = 0, the Theorem 1 can be applied (according to Lemma, P(x,y) = a is
absolutely irreducible), taking h = 1 (that P(x,y) = @ has at most C;|G|?>/3solutions for a
constant C; depending only on the polynomial P).

2)  If @ = 0, then the number of pairs for which P(x, y) = 0 is at most 2n|G|.

a) If P(x,*) = 0 (P vanishes when vy is substituted), then there are no more than n values of
v (for example, the leading coefficient of x must vanishes, and its degree in y is not greater than n).
They give no more than n|G| pairs for which the P vanishes.

b) If the polynomial does not vanish (the given y is substituted), then it turns into a nonzero
polynomial in x of degree no greater than n. Therefore, this polynomial has no more than n roots.
In total, this gives at most |G|n pairs for which the polynomial vanishes. Now it is needful to
estimate the number of values of good P on elements from the (n, p)—admitted group G.

As |G| = 100n? (see Definition 2), then

2
2n|G| < 2!

50n?

As it was proved above, there are at most 2n|G| solutions
P(x,y)=0
this means that there are smaller than one fiftieth of all possible pairs. Remaining at least
(50n?-1)|G)?
s50n?
does not exceed €, |G|%/3 pairs. Hence, the number of values cannot be less than

(sonZ-1)|6)2

pairs must somehow be distributed among other values of P, but each of these values

) 50nZ-1

(clsl?;ri;-’s} - (50-n2cl)|G|M3 (5)
As C; = 32n°® (see the Theorem 1), then
son?-1
C= 1600n7

The goal of this paper is to improve the lower bound of the number of solutions of the set
P(G,G).
Theorem 3 (non-trivial bound). For any n there exist € > 0 such that for any prime
number p(n, p) — admitted group G and a good polynomial P of degree n:
IP(G,6)| > CIGP/>
Proof. Suppose the contrary. Then there exists n, for which Theorem 3 is not correct. Then
for any constant C there are the (n, p) —admitted group G and the good polynomial P such that
P(G,6)| = CIGP/?
To obtain a contradiction, Theorem 1 must be applied. Thus, for n it needs to be chosen some
C,C; = 0 satisfying the condition of Theorem 3. After this let us choose € = 0 such that
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s0n®-1
s0n?

Take any bad pair (P, G) for the chosen C. All possible values of P(G, G) that are not more
than C|G|*>/? can be arranged in the form of the Young tableau in such a way that each row contains

€ = &, Gt =

values from one G -coset, and in different rows - from different G-cosets . Thus, each line of the
resulting diagram has no more than |G| elements. Let us estimate from above the number of pairs
(x,v) for which the value lies into one or another column.

If some column  has h elements, then it can be noted that
h = |P(G,G)| = C|G|*? = C,|G|*?. Therefore, since all the elements of the column lie in
different G- cosets, according to the Theorem 1, there exists at most €; h%/3|G|?/3 pairs (x,y) for
which P(x,y) lies into this column. The number of pairs for which P(x,y) = 0 is at most 2n|G|
(see the proof of Theorem 2).

Now it can be denoted the column lengths for h1hz, ... hig| and estimate the total number of
pairs:

[e] 2/3
IG]? < 2n|G| + Z C1h7|G|?3
k=1
On the other hand, by the inequality on the power averages:

( hi/3)3/2 < Z|G|

1G] =1

The sum of all ™is the total number of cells in the table, so it does not exceed C|G|3/2,
whence:

IG|? < 2n|G] +cl|c|2/3|c;|(“"'a' Y213 = 2n|G| + C,C?3|GI?

As |G| = 100n3(see Definition 2), it is a contradiction, and therefore, theorem is proved.

The constant
nZ — 1 —1

= (( 50n2C, )2 )_(1600717

)3!2

as C, was not found yet.
Conclusion

In this paper, the sum-product problem for multiplicative subgroups is expanded, and the
lower bound for the number of solutions for the set P(G,G) is obtained. The received estimate

generalizes the ones previously obtained (see [1,2]). These estimates are a consequence of the
obtained result assuming that the polynomial P(x,y) is linear. The results that are considered in

this paper, are intricately connected to another problems in additive combinatorics, namely, the
additive energy of two sets and the structure of sumset problem, which allows to obtain the
improved estimates for the cardinality of such sets.

Cnucok 1uTepaTrypsl: References:

1. Tao, T. Ctpykrypa u ciy4aitHocts - M: MIIHMO, 1. Tao, T. Struktura i sluchajnost' - M: MCNMO, 2013. -
2013.-360 c. 360 p.

2. Corvaja, P. Greatest common divisor of u-1, v-1 in 2. Corvaja, P. Greatest common divisor of u-1, v-1 in
positive and rationalpoints on curves over finite fields /P.  positive and rational points on curves over finite fields /
Corvaja, U. Zannie // L. Eur. Math. Soc., 15, 1927- 1942, P. Corvaja, U. Zannie // L. Eur. Math. Soc., 15, 1927-
(2013). - Pp.345-356. 1942, (2013). - Pp.345-356.

Automation and modeling in design and management Ne 2(08) 2020



ABTOMATH3alMs U MO/IeIHPOBAHUE B IPOCKTHPOBAHUHU U ynpasjenun Ne 2(08) 2020

3. Berorun, MN.B. O6 agguTHBHEIX  CABUTraX
MYJIBTUILIMKAaTUBHEIX moarpynn / W.B. Berorun, W.J.
kpenos // Marem. ¢6., 2012. - T. 203, Ne 6. — C. 81—
100.

4. Heath-Brown, D. R. New bounds for Gauss sums
derived from k-thpowers, and for Heilbronn’s exponential
sum / Heath-Brown, D. R. S. Konyagin // Q. J. Math., 51:
2 (2000). - Pp. 221-235.

5. Konsirun, C. B. OueHkW mis TPUTOHOMETPUYECKUX
CyMM Ha MNOATPYHNIBl M AN TrayccoBelx cymm'", IV
nHTepHan. KoH(. CoBpeMeHHBIE TPOOIEMBI TEOPUH YUCET
U ee IpWIOKeHHs, AKTyanbHele npoOiembl. Yactp 3
(Tymna, 2001). - U3a: Mock. yH-Ta. - 2002. - C. 86-114.

6. Ctenanos, C. A. O 4ucnie TO4eK THIEPILTUNITUYECKON
KPHUBOH HaJl NpOCTHIM KoHeYHbIM 1ojieM / C. A. CrenaHoB
// N38. AH CCCP. - 1969. - C.1171-1181.

7. Garcia, A. Fermat curves over finite fields / A. Garcia,
J. F. Voloch // Number Theory, 30: 3 (1988). - Pp. 345-
356.

8. Katz, N. H. On additive doubling and energy / N. H.
Katz, P. Koester. SIAM J. Discrete Math., 24:4 (2010). -
Pp. 1684-1693.

9. Sanders, T. On a non-abelian Balog-Szemeredi-type
lemma, arXiv: 0912.0306.

10. Sanders, T. Structure in sets with logarithmic
doubling, arXiv: 1002.1552.

Caegenusi 00 aBTopax

AnemnHa Codbsi AjleKCaHIPOBHA
cTyAeHTka nporpamMMmel MBA yHuBepcurera
bendopammpa,

E-mail: aleshina.sofia@mail.ru.

Bororun Unbsa Baaagumuposuy

KaHAuAaT (PU3NKO-MATEMaTHIECKUX HAYK, JOLCHT
¢axynpTeTa MaTeMaTHkn HarmonansHOTO
HccnenoBatensckoro YausepcureTa “Bricmas [llkomna
DKOHOMUKH,

E-mail: vyugin@gmail.com.

3. V'yugin, I.V. Ob additivnyh sdvigah mul'tiplikativnyh
podgrupp / L.V. V'yugin, I.D. SHkredov / Matem. sb.,
2012. - T. 203, Ne 6. — Pp. 81-100.

4. Heath-Brown, D. R. New bounds for Gauss sums
derived from k-thpowers, and for Heilbronn’s exponential
sum / Heath-Brown, D. R. S. Konyagin // Q. J. Math., 51:
2 (2000). - Pp. 221-235.

5. Konyagin, S. V. Ocenki dlya trigonometricheskih
summ na podgruppy i dlya gaussovyh summ", IV
internac. konf. Sovremennye problemy teorii chisel i ee
prilozheniya, Aktualnye problemy. CHast' 3 (Tula,
2001). - I1zd: Mosk. un-ta. - 2002. - Pp. 86-114.

6. Stepanov, S. A. O chisle tochek giperellipticheskoj
krivoj nad prostym konechnym polem / S. A. Stepanov //
Izv. AN USSR. - 1969. - Pp. 1171-118]1.

7. Garcia, A. Fermat curves over finite fields / A. Garcia,
J. F. Voloch // Number Theory, 30: 3 (1988). - Pp. 345-
356.

8. Katz, N. H. On additive doubling and energy / N. H.
Katz, P. Koester. SIAM J. Discrete Math., 24:4 (2010). -
Pp. 1684-1693.

9. Sanders, T. On a non-abelian Balog-Szemeredi-type
lemma, arXiv: 0912.0306.

10. Sanders, T. Structure in sets with logarithmic
doubling, arXiv: 1002.1552.

Cmamws nocmynuia 6 peokonnezuio 24.04.2020.
Peyenszenm: xano. mexu. Hayx, ooyenm,

Bpsanckuil 2ocydapcmeentviil mexHuyecKuil yHueepcumem
Tloosecosckuii A.T.

Cmamuws npunuama x nyoauxayuu 30.04.2020.

Information about authors:

Sofia Aleshina
MBA student at University of Bedfordshire, UK,
E-mail: aleshina.sofia@mail.ru.

Ilya Vyugin

Candidate of Sciences* (PhD), docent of faculty of
mathematics at National Research University “Higher
School of Economics”,

E-mail: vyugin@gmail.com.

Automation and modeling in design and management Ne 2(08) 2020

10


mailto:aleshina.sofia@mail.ru
mailto:vyugin@gmail.com
mailto:aleshina.sofia@mail.ru
mailto:vyugin@gmail.com

	С.А. Алешина, И.В. Вьюгин
	ПОЛИНОМИАЛЬНЫЙ ВАРИАНТ ЗАДАЧИ СУММ-ПРОИЗВЕДЕНИЙ
	S.A. Aleshina, I.V. Vyugin

	POLYNOMIAL VERSION ON THE SUM-PRODUCT PROBLEM

