Ю.Г. Забарянский¹, А.А. Головин², Ю.А. Кураченко³

ОЦЕНКА ДОЗОВОЙ НАГРУЗКИ НА РАДИОХИРУРГА ПРИ РАДИОНУКЛИДНОЙ ВЕРТЕБРОПЛАСТИКЕ

 1 Физико-энергетический институт им. А.И. Лейпунского Обнинск 2 Институт атомной энергии НИЯУ МИФИ, Обнинск 3 Всероссийский научно-исследовательский институт радиологии и агроэкологии. Обнинск

Контактное лицо: Юрий Геннадьевич Забарянский: chessmaster89@mail.ru

РЕФЕРАТ

<u>Цель:</u> Произвести оценку дозовой нагрузки на радиохирурга, получаемой в ходе новой операции – радионуклидной вертебропластики. Нормировать нагрузку на максимальное количество операций, при которых суммарная эквивалентная доза не будет превышать значения, указанные в НРБ-99/2009.

Материал и методы: Используется широко распространенный метод Монте-Карло моделирования на основе кода МСNР вместе с библиотеками данных, а также ядерно-физические характеристики радионуклидов из публикации ICRP-38.

<u>Результаты:</u> Показано, что при использовании наиболее перспективного для данной процедуры радионуклила ¹⁸⁸Re эквивалентная доза для ладоней врача не превышает 1 мЗв за одну операцию. Хирург может провести до 580 операций в год, не нарушая при этом нормы радиационной безопасности.

Заключение: Расчетными методами доказана безопасность радионуклидной вертебропластики для хирурга и обслуживающего персонала.

Ключевые слова: метастазы в позвоночнике, радионуклидная вертебропластика, рений-188, MCNP, HPБ-99/2009, персонал, лучевая нагрузка

Для цитирования: Забарянский Ю.Г., Головин А.А., Кураченко Ю.А. Оценка дозовой нагрузки на радиохирурга при радионуклидной вертебропластике //Медицинская радиология и радиационная безопасность. 2021.Т.66. №2. С. 76–77

DOI: 10.12737/1024-6177-2021-66-2-76-77

Ввеление

Вертебропластика является одной из самых популярных и эффективных операций при метастазах в позвоночнике и остеопорозных переломах. Путем введения в тело позвонка костного цемента стабилизируется костная структура, что значительно уменьшает болевой синдром. Тем не менее, вертебропластика имеет существенный недостаток: примерно у 60 % больных болевой синдром возвращается в течение полугода. Наиболее вероятной причиной является продолженный рост метастазов в пористой структуре кости. Ранее была предложена идея добавить в костный цемент радионуклид, который может дополнительно воздействовать на клетки опухоли на некотором расстоянии от цементного ядра [1]. В других работах была оценена эффективность радионуклидной вертебропластики, а также ее безопасность для пациента [2, 3]. Однако хирург будет проводить такие операции постоянно, а пациент, даже с большим количеством поврежденных позвонков, подвергнется процедуре не больше 3 раз. Поэтому целесообразно нормировать нагрузку на радиохирурга на максимальное количество операций, при которых нагрузка не будет превышать дозы, указанные в НРБ-99/2009[4].

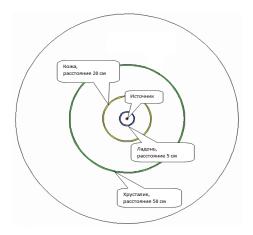
Материал и методы

Расчеты доз проводились с использованием программного кода MCNP [5], моделирующего процесс переноса ионизирующего излучения в веществе методом Монте-Карло.

В расчетах использовалась простая сферическая модель, представленная на рис. 1. В качестве источника моделировалась сфера объемом 5 см³. Конечный объём источника позволяет в некоторой степени учесть самопоглощение излучения в источнике. Далее сферическими слоями на различных расстояниях от источника моделировались ладони, кожа и хрусталик глаза радиохихурга.

Анализ видеозаписи операции позволил выбрать простейший сценарий единичной процедуры, выполняемой хирургом. Эта процедура состоит в:

- заполнении шприца цементом, содержащим радионуклид;


- перемещении хирурга непосредственно к пациенту;
- инъекции цемента.

Далее предполагается, что длительность всей единичной процедуры ~ 200 с (~ 3.5 мин).

При выполнении расчета были приняты следующие допущения:

- предполагается, что хирург относится к группе А персонала (лица, работающие с техногенными источниками излучения, [4]), и все нормируемые величины доз взяты именно для этой группы;
- средства индивидуальной защиты не применяются;
- предполагается, что при операции используется радионуклид¹⁸⁸Re;
- объемная активность радионуклида 10 мКи/мл;
- все расчётные модели ориентированы на получение консервативной оценки, т. е. рассчитанные дозовые характеристики *a priori* завышены.

Для расчёта поглощённой дозы на один фотон использовались общепринятые керма-факторы, рекомендованные NIST. Эти керма-факторы переводят единичный флюенс (т. е. 1 фотон) в поглощённую дозу.

Puc 1. Сферическая модель, принятая в расчетах Fig 1. Spherical model adopted in the calculations

Таблица 1

Результаты расчетов максимальной дозовой нагрузки Results of calculations of the maximum radiatin dose

	Доза от фотонов, мЗв	Доза от электронов, мЗв	Суммарная доза, мЗв	Годовой предел для группы А, мЗв	Допустимое количество операций
Ладони	0,22	0,64	0,86	500	580
Хрусталик глаза	0,0034	0,00012	0,0035	150	43000
Кожа	0,020	0,058	0,078	500	6400

Результаты

В табл. 1 представлены результаты расчетов. Как видно, максимальная дозовая нагрузка приходится на руки врача, что вполне естественно, поскольку источником является преимущественно β -излучатель ¹⁸⁸Re. Но даже с учетом всех допущений, которые увеличивают итоговую дозу, радиохирург может провести 580 операций в год, соблюдая при этом нормативы для персонала группы A.

Medical Radiology and Radiation Safety. 2021. Vol. 66. № 2. P. 76-77

Заключение

При использовании 188 Re радиационная безопасность обеспечена как для хирурга и обслуживающего персонала, так и для окружения пациента после его выписки из стационара. Полученные результаты хорошо согласуются с экспериментальной работой [6], в которой также использовался β -источник (32 P), находящийся в шприце в руках хирурга.

Radiation physics, engineering and dosimetry

Dose Estimation on Surgeon for radionuclide Vertobroplasty Yu.G. Zabaryansky¹, A.A. Golovin², Yu.A. Kurachenko³

¹AI Leypunsky Institute for Physics and Power Engineering, Joint-Stock Company, Obninsk ²Obninsk Institute for Nuclear Power Engineering, Obninsk, Russia ³Russian Institute of Radiology and Agroecology, Obninsk, Russia

Contact person: Yuri Gennadievich Zabaryanskiy, chessmaster89@mail.ru

ABSTRACT

<u>Purpose</u>: To estimate the doses to a surgeon for a new operation – radionuclide vertebroplasty. To normalize the irradiation for the maximum number of operations in which the total equivalent dose will not exceed the values specified in the NRB-99/2009.

Material and methods: The widespread Monte-Carlo code MCNP used with data libraries, as well as the ICRP-38 data on radionuclide characteristics.

<u>Results:</u> Using the radionuclide ¹⁸⁸Re, the most promising for this procedure, the equivalent dose in the doctor's palms does not exceed 1 mSv per operation. A surgeon can perform up to 580 operations per year without violating radiation safety standards.

Conclusion: Calculation methods proved the safety of radionuclide vertebroplasty for the surgeon and service personnel.

Key words: metastases of the spine, radionuclide vertebroplasty, rhenium-188, MCNP, NRB-2009, personal, staff, exposure

For citation: Zabaryansky YuG, Golovin AA, Kurachenko YuA. Dose Estimation on Surgeon for radionuclide Vertobroplasty. Medical Radiology and Radiation Safety. 2021;66(2):76–77.

DOI: 10.12737/1024-6177-2021-66-1-76-77

СПИСОК ИСТОЧНИКОВ

- 1. Вознесенский Н.К., Кураченко Ю.А., Матусевич Е.С. и др. Радионуклидная вертебропластика при метастазах в позвоночнике // Медицинская радиология и радиационная безопасность. 2012. Т. 57, № 3. С.39-43.
- Вознесенский Н.К., Мардынский Ю.С., Кураченко Ю.А. и др. Дозиметрическое планирование и выбор нуклида для радионуклидной вертебропластики при метастатическом поражении тел позвонков // Медицинская физика. 2012. №1. С.34-39.
- 3. Левченко А.В., Забарянский Ю.Г., Головин А.А. и др. Программное обеспечение радионуклидной вертебропластики // Ядерная энергетика. 2014. №3. С.52-61.
- Нормы радиационной безопасности НРБ-99/2009. Санитарные правила и нормативы. СанПиН 2.6.1.2523-09.
- Briesmeister JF. MCNP. A General Monte Carlo N-Particle Transport Code. User's Manual. Los Alamos National Laboratory Report. LA-13709-M Version 4C UC 700 (April 10, 2000).
- Степаненко В.Ф., Колыженков Т.В., Дубов Д.В., Цыб А.Ф. Доза облучения персонала при брахитерапии злокачественных новообразований микроисточниками ³²P // Атомная энергия, 2008. № 4. С. 233-5.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов. Финансирование. Исследование не имело спонсорской поддержки. Участие авторов. Статья подготовлена с равным участием авторов. Поступила: 23.12.2020. Принята к публикации: 20.01.2021.

REFERENCES

- Voznesensky NK, Kurachenko YuA, Matusevich ES, et al. Radionuclide Vertebroplasty of Spinal Metastasis. Medical Radiology and Radiation Safety. 2012; 57(3):39-43 (In Russian).
- Voznesensky NK, Mardynsky YuS, Kurachenko YuA, et al. Dosimetry Planing and Irradiator Choise for Radionuclide Vertebroplastics of Vertebra Metastasis. Medical Physics. 2012; 1:34-39. (In Russian).
- Levchenko AV, Zabaryanskiy YuG, Golovin AA, et al. Software for Radionuclide Vertebroplasty. Nuclear Energy and Technology. 2014; 3:52-61 (In Russian).
- 4. Radiation Safety Standards (NRB-99/2009). Sanitary Rules and Regulations (In Russian).
- Briesmeister JF. MCNP. A General Monte Carlo N-Particle Transport Code. User's Manual. Los Alamos National Laboratory Report. LA-13709-M Version 4C UC 700. April 10, 2000.
- Stepanenko VF, Kolyzhenkov TV, Dubov DV, Tsyb AF. Radiation dose to Providers of Brachytherapy with Microsources of ³²P for Cancer Tumors. Atomic Energy 2008(4):233-5. (In Russian).

Conflict of interest. The authors declare no conflict of interest. **Financing.** The study had no sponsorship.

Contribution. Article was prepared with equal participation of the authors. **Article received:** 23.12.2020. Accepted for publication: 20.01.2021.