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Abstract. The dynamic spectrum of a whistling at-

mospheric is a signal of falling tone, and the group de-

lay time of the signal as a function of frequency is 

formed as a result of propagation of a broadband pulse 

in a medium (magnetospheric plasma) with a quadratic 

dispersion law. In this paper, we show that for quadratic 

dispersion the group velocity is invariant under Galilean 

transformations. This means that, contrary to expecta-

tions, the group velocity is paradoxically independent of 

the velocity of the medium relative to the observer. A 

general invariance condition is found in the form of a 

differential equation. To explain the paradox, we intro-

duce the concept of the dynamic spectrum of Green’s 

function of the path of propagation of electromagnetic 

waves from a pulse source (lightning discharge in the 

case of a whistling atmospheric) in a dispersive medi-

um. We emphasize the importance of taking into ac-

count the motion of plasma in the experimental and the-

oretical study of electromagnetic wave phenomena in 

near-Earth space. 

Keywords: electromagnetic waves, moving plasma, 

Earth’s magnetosphere, dispersion, propagation path, 

Green’s function, dynamic spectrum. 

 

 

 

 

INTRODUCTION 

Lorentz invariance of the velocity of electromagnet-
ic wave propagation in empty space is one of the tenets 
of the special relativity theory [Landau, Lifshitz, 1988]. 
In this case, group νg and phase νph velocities are the 
same and both are equal to the universal constant — the 
speed of light c=3∙10

10
 cm/s. The situation is different 

in a dispersive medium with a refractive index n(ω): the 
group and phase velocities differ as 

g g/ ,v c n  ph / ,v c n  (1) 

where ng=∂ωn /∂ω is the so-called group refractive in-
dex; ω is the wave frequency. In this paper, we focus on 
another difference between the laws of electromagnetic 
wave propagation. This difference is radical and con-
sists in the fact that during propagation in a material 
medium the group velocity changes when passing from 
one inertial frame of reference to another. 

Let us introduce an accompanying frame of refer-
ence, in which a medium is static, and a laboratory 
frame moving relative to the medium uniformly and 
rectilinearly with a velocity u in the direction of wave 
propagation. In the laboratory frame of reference, we 
designate physical quantities by primed symbols. We 
restrict ourselves to the nonrelativistic approximation 

u<<c  so that Lorentz transformations can be replaced 

by simpler Galilean transformations. 
Common sense suggests that the group velocity 

obeys the usual law of velocity composition: 

g g .v v u   (2) 

In this paper, we draw attention to the fact that, contrary 
to common sense, in the case of whistling atmospherics, 
which are a type of geoelectromagnetic waves [Gersh-
man, Ugarov, 1960; Guglielmi, Pokhotelov, 1996], the 
group velocity is invariant under Galilean transfor-
mations: 

g g .v v  (3) 

On the one hand, this partly resembles the invariance of the 
wave propagation velocity in empty space. On the other 
hand, Formula (3) is a paradox that needs explanation. 

In the next section, we find an invariance condition 
for the group velocity under Galilean transformations. 
Then, we briefly outline the theory of propagation of 
whistling atmospherics [Storey, 1953] and show that the 
group velocity of whistling atmospherics satisfies rela-
tion (3). We give examples of waves of other types 
whose group velocity is also invariant under Galilean 
transformations. To explain the paradox, we take into 
account properties and conditions of observation of 
whistling atmospherics and introduce the concept of the 
dynamic spectrum of Green’s function of whistling at-
mospheric propagation path. 

 

1. INVARIANCE CONDITION  

Expand the group velocity in the laboratory frame of 
reference in a power series and restrict ourselves to the 
first two terms: 

   
g

g g .
dv

v v ku
d




     


 (4) 
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Here, we apply the Doppler formula ω=ω '+ku. From 

(4) in view of the equality    g gv v u     , rewrite 

(3) as follows: 

g ph
.

dv v

d

 


 
 (5) 

To avoid misunderstandings, it has to be said that here 

and below we consider the waves as slow vp h<<c  and, 

accordingly, neglect the well-known Fresnel correction 

to the propagation velocity (see, e.g., [Frankfurt, Frank, 

1972]). For whistling atmospherics, the inequality 

vph<<c  is satisfied with a large margin [Gershman, 

Ugarov, 1960]. 

Find the dispersion law ω(k) for waves whose group 

velocity remains unchanged when passing from the ac-

companying frame of reference to the laboratory one 

(see also [Guglielmi, 1963; Guglielmi, 1968]). To do 

this, represent equality (5) in the form of the following 

differential equation: 

22

2
0,

d f df
f

dd

 
  

  
 (6) 

where f(ω)=ωn(ω). The equation has an analytical solu-

tion which gives 

ω=ak
2
+b,  (7)  

where a and b are arbitrary constants, with a≠0 on phys-

ical grounds. Thus, the equality 
g gv v   holds provided 

that the frequency quadratically depends on the wave-

number. 

 

2. WHISTLING ATMOSPHERICS 

A whistling atmospheric is excited by a lightning 

discharge in the troposphere and, propagating in the 

magnetosphere along a geomagnetic field line, crosses 

the equatorial plane and reaches a conjugate point on 

Earth's surface in another hemisphere [Likhter et al., 

1988]. When propagating, the pulse signal spreads out 

in such a way that at the output of a radio receiver we 

hear a whistle of a falling tone. 

Note that the refractive index n(ω, θ) in the magne-

tosphere depends on the angle θ between the wave vec-

tor k and the tangent to geomagnetic field line. The di-

rection of the group velocity vector vg in the general 

case does not coincide with the direction of the k vector, 

and the value vg=c /ng is equal to the projection of vg on 

the direction of k [Ginzburg, 1960]. 

In the geometrical optics approximation, the main 

laws of whistling atmospheric propagation are derived 

using the Storey formula: 

0 .
cos

n



 

 (8) 

Here, ω0 is the Langmuir plasma frequency; Ω is the 

electron gyrofrequency, ω<<Ω, n>>1 [Storey, 1953; 

Gershman, Ugarov, 1960]. Suppose that plasma moves 

along lines of the external magnetic field. This is a fair-

ly realistic situation as there is a flow of plasma along 

geomagnetic field lines from the summer hemisphere to 

the winter one. From formula (8) it follows that 

ω=αk
2
,  (9)  

where 2

0 cos ;k      k 0=ω0 /c, which coincides with 

(7) for a=α and b=0. Hence, the paradox 
g gv v   arises 

because the dispersion relation for whistling atmospher-

ics has the form of a quadratic dependence of the fre-

quency on the wave number. 

 

3. EXPLANATION OF THE PARADOX 

It is quite clear that the measurement result depends 

on properties of an object under study and the instru-

ments selected for the measurements. If the velocity of a 

narrowband wave train is measured with broadband 

receiving equipment, it is obvious that the velocity 

g g .v v u    will be measured. The velocity 
g gv v   will 

be measured when a broadband signal, excited by a 

pulse source, propagates along a sufficiently long trajec-

tory in a medium with a quadratic dispersion law, and 

the receivers are selective, tuned to a fixed frequency. 

There are two important clarifications to be made 

here. When describing the first experimental situation, 

we completely neglected the Fresnel correction. This is 

permissible only if the wave velocity is much lower 

than the velocity of light. The latter case requires a more 

detailed explanation. We can see that the paradox arises 

when a number of very special assumptions are made 

about properties of a signal and about the measurement 

method. However, whistling atmospherics have just 

these properties. As for measurements, broadband re-

ceivers are used for recording, but signal processing is 

performed by the method of spectral-temporal analysis 

with narrowband filtering as an essential element. Let us 

clarify what has been said by analyzing Green’s func-

tion of the electromagnetic wave propagation path in 

magnetospheric plasma. 

Let us make a brief excursus into foundations of the 

wave propagation theory. In the literature, the Cauchy 

problem is widely used such that at the initial moment 

in time t=0 the spatial structure of the wave field in the 

entire space is specified and it is required to find the 

space-time structure of the field at t>0. As an illustra-

tion, consider waves propagating in a positive direction 

of the x-axis in a homogeneous infinite medium. In the 

asymptotics, i.e. at large distances and at long times, an 

initial broadband pulse turns into a modulated quasi-

sinusoidal wave. Its amplitude decreases with time as 

1/ .t  Spectral components of the initial pulse propa-

gate along a family of world lines  gx v k t  in two-

dimensional space-time (x, t). In other words, in the 

asymptotics there is an unfolded fan of space-time rays 

along which the spectrum of the initial pulse "spreads" 

(for more details, see the review [Vainshtein, 1976]). 

It is easy to understand that the Cauchy problem 

does not in any way correspond to the conditions for 

excitation, propagation, and detection of whistling at-

mospherics. Here, it is appropriate to set the boundary 

value problem: a source is given at the point x=0 (in our 

case, it is a lightning discharge) and it is required to find 
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a signal at the point of observation x>0. The segment [0, 

x] will be called the propagation path. In our case, the 

propagation path is a segment of the geomagnetic field 

line connecting a lightning discharge with a receiver. 

The receiver can be located on Earth's surface or in the 

ionosphere (on board a satellite). A delta-like pulse is 

fed to the input of the propagation path so that the solu-

tion to our boundary value problem  

   
1

, exp
2

G x t ik x i t d





       
 (10) 

is Green's function, or impulse response of the propaga-

tion path. 

Finding Green’s function is not easy even for a ho-

mogeneous path. The path length x is fixed. We cannot 

therefore apply the concept of space-time rays 

x/t=const, which approximately corresponds to the pat-

tern of wave propagation when t→∞, x→∞. Instead of 

this we can, however, propose an asymptotic spectral-

time representation of Green’s function. The idea is as 

follows. 

Determine the dynamic spectrum Г(ω,t) of 

Green’s function (10) by the following construction. 

Multiply the Fourier spectrum of Green’s function by 

 
2

2 exp ,    
 

 i.e. cut out in the spectrum a 

window of width ε
–1/2

 centered at the frequency ν=ω. 

Then, perform the inverse Fourier transform: 

 

   
2

,

exp .

t

x
i t i n d

c





  

 
           

 


 (11) 

For a sufficiently large ε, the main contribution to the 

integral is made by the frequencies ν close to ω. Intro-

duce the notation ξ=ν–ω and expand n(ν) in a power 

series of ξ up to a quadratic term. This yields 

   g

2
g

, exp

,
2

x
t d i n t

c

dnx
i
c d





  
         

 

  
    

  


 (12) 

or after integration 

 
 

 

 

2

2
, exp .

2

t
t

i i

       
    

            

 (13) 

Here, τ=(x /c)ng, τ'=dτ/dω. Obviously, |Г(ω, t)| peaks at 

t=τ(ω). The quantity τ(ω) is called the group delay time. 

It remains to use Storey formula (8) to calculate the 

group delay time of whistling atmospherics: 

  .
2

x
  


 (14) 

Since τ=x /νg and hence  
1/2

g g 2 ,v v    we infer 

that the paradox becomes clear. Formula (3) is valid in 

its domain of applicability. However, we should not 

overlook wave field properties and specific conditions 

for observing and analyzing whistling atmospherics. 

4. DISCUSSION 

Lightning discharges excite not only whistling at-

mospherics, but also so-called spherics [Guglielmi, 

Pokhotelov, 1996]. Unlike whistling atmospheric, a 

spheric propagates in the Earth-ionosphere waveguide, 

not in the magnetosphere. Condition (7) holds at fre-

quencies close to the critical frequency of the wave-

guide, i.e. the frequency quadratically depends on the 

wave number.  

Langmuir waves are a classic example of waves with 

a quadratic dispersion law. In collisionless plasma, 

Langmuir waves experience Landau damping [Pitaevsky, 

Lifshitz, 1979]. We ignore the damping. Then the disper-

sion relation takes the form 

2 2

0

3
1 ,

2
D k

 
    

 
 (15) 

where D is the Debye radius [Kadomtsev, 1968]. 

An interesting example of waves with the quadratic 

dispersion law is provided by quantum mechanics. It 

follows from the Schrödinger equation that the disper-

sion law for a free electron has the form  

2 ,
2

ћ
k

m
   (16) 

where m is the electron mass, ħ is the Planck constant 

[Landau, Lifshitz, 1989]. In the form, (16) coincides 

with dispersion relation (10) for whistlers so that for-

mally 
g g .v v   

Discuss briefly the issue of taking into account the 

longitudinal inhomogeneity of the propagation path 

when calculating the group delay time of a whistling 

atmospheric. The longitudinal inhomogeneity can be 

easily taken into account by the geometrical optics 

method [Ginzburg, 1960]. As a result, instead of (14) 

we have 

 
 0

1
.

2

x
dx

x
  

 
  (17) 

An extensive literature is devoted to considering the 

magnetospheric plasma inhomogeneity in the analysis of 

whistling atmospherics, which is reflected in many reviews 

and monographs (see, e.g., [Likhter et al., 1988]). 

At the end of this section, we would like to empha-

size that in the work we have used basic physical con-

cepts of space, time, frame of reference, electromag-

netic field, dispersive medium and have correctly per-

formed standard mathematical calculations. Neverthe-

less, the result obtained may seem contrary to the prac-

tice of observing electromagnetic waves, but only at 

first glance. A whistling atmospheric is a vivid exam-

ple of an electromagnetic signal propagating with a 

group velocity independent of the velocity of the me-

dium along the propagation path. 

The result, which is interesting in itself, has certain 

methodological significance. It is well known that a 

whistler can repeatedly go along the same path, being 

reflected from the ionosphere at magnetoconjugate 

points. Place two identical broadband radio receivers at 

conjugated points. It would seem that the difference in 
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travel times of a signal from the Northern Hemisphere 

to the Southern Hemisphere and back (or vice versa) 

can be used to estimate the velocity of travel of magne-

tospheric plasma along geomagnetic field lines. Our 

result suggests that such a possibility is excluded. We 

should, however, make a minor reservation. What is 

meant here, are typical whistlers, which are signals of a 

falling tone. Signals of a special type, aka nose whis-

tlers, are in principle suitable for diagnosing the plasma 

velocity, but this is a topic for another work. 

 

CONCLUSION 

The influence of plasma motion on the nature of the 
observable electromagnetic wave phenomena is of un-
doubted interest for magnetospheric physics. We drew 
attention to the unusual property of whistling atmos-
pherics, expressed by Formula (3). It is not so easy to 
interpret the formula as it might seem. We had to take 
into account the features of propagation of broadband 
signals, excited by a pulse source, in a medium with a 
quadratic dispersion law, as well as the conditions for 
recording and processing signals. We have introduced 
the concept of the dynamic spectrum of Green’s func-
tion for the propagation path of a whistling atmospheric. 
The result of the analysis suggests that the frequency 
dependence of the group delay of a whistling atmos-
pheric is not affected by the velocity of travel of magne-
tospheric plasma relative to the observer. 

We express our sincere gratitude to G.A. Zherebtsov 
for his attention to our work and valuable advice. We 
thank O.D. Zotov and F.Z. Feigin for stimulating dis-
cussions. We are grateful to the reviewers for thorough 
analysis of our manuscript.  

This work was financially supported by the Russian 
Foundation for Basic Research (project No. 19-05-
00574), as well as by programs of government assign-
ments of IPE RAS and ISTP SB RAS. 

 

REFERENCES 

Frankfurt U.I., Frank A.M. Optika dvizhushchikhcya tel 
[Optics of Moving Bodies]. Moscow, Nauka Publ., 1972, 212 
p. (In Russian). 

Gershman B.N., Ugarov V.A. Propagation and generation 
of low-frequency electromagnetic waves in the upper atmos-
phere. Soviet Physics Uspekhi. 1961, vol. 3, pp. 743–764. 
DOI: 10.1070/PU1961v003n05ABEH005809. 

Ginzburg V.L. Rasprostranenie elektromagnitnykh voln v 

plazme [The Propagation of Electromagnetic Waves in Plas-

mas]. Moscow, Fizmatgiz Publ., 1960, 552 p. (In Russian). 

(English edition: Ginzburg V.L. The Propagation of Electro-

magnetic Waves in Plasmas. Translated from the Russian 

edition (Moscow, 1960) by J.B. Sykes and R.J. Tayler. Per-

gamon Press, 1964, 535 p.) 

Guglielmi A.V. On the group velocity of slow waves in a 

drifting magnetoactive plasma. Geomagnetism and Aeronomy. 

1963, vol. 3, no. 4, pp. 754–757. (In Russian). 

Guglielmi A.V. The propagation of slow waves in a mov-

ing plasma. Ann. Geophys. 1968, vol. 24, no. 3, pp. 761–763. 

Guglielmi A.V., Pokhotelov O.A. Geoelectromagnetic 

waves. Bristol and Philadelphia, IOP Publ. Ltd., 1996, 402 p. 

Kadomtsev B.B. Landau damping and echo in a plasma. 

Soviet Physics Uspekhi. 1968, vol. 11, pp. 328–337. 

Landau L.D., Lifshitz E.M. Teoriya polya [Field Theory]. 

Moscow, Nauka Publ., 1988, 512 p. (In Russian). (English edi-

tion: Landau L.D., Lifshitz E.M. The Classical Theory of 

Fields. Pergamon Press, 1975, 403 p.) 

Landau L.D., Lifshitz E.M. Kvantovaya mekhanika 

[Quantum Mechanics]. Moscow, Nauka Publ., 1989, 768 p. 

(In Russian). (English edition: Landau L.D., Lifshitz E.M. 

Quantum Mechanics. Non-Relativistic Theory. Pergamon 

Press, 1977, 674 p.). 

Likhter Ya.I., Guglielmi A.V., Erukhimov L.M., Mikhai-

lova G.A. Volnovaya diagnostika prizemnoi plazmy [Wave 

diagnostics of surface plasma]. Moscow, Nauka Publ., 1988, 

216 p. (In Russian). 

Pitaevsky L.P., Lifshitz E.M. Fizicheskaya kinetika [Phys-

ical Kinetics] Moscow, Nauka Publ., 1979, 807 p. (In Rus-

sian). (English edition: Pitaevsky L.P., Lifshitz E.M. Physical 

Kinetics. Butterworth-Heinemann, 1981, 625 p.). 

Storey L.R.O. An investigation of whistling atmospherics. 

Philosophical Transactions of the Royal Society. 1953, vol. 

246, no. 908, pp. 113–141. DOI: 10.1098/rsta.1953.0011. 

Vainshtein L.A. Propagation of pulses. Soviet Physics 

Uspekhi. 1976, vol. 19, pp. 189–205. DOI: 10.3367/UFNr. 

0118.197602h.0339. 

 

How to cite this article 

Guglielmi A.V., Klain B.I., Potapov A.S. On the group velocity of 

whistling atmospherics. Solar-Terrestrial Physics. 2021. Vol. 7. Iss. 4. 
P. 67–70. DOI: 10.12737/stp-74202106. 

 

 
 

 
 

 

 

 

 

 

https://doi.org/10.1070/PU1961v003n05ABEH005809
https://doi.org/10.1098/rsta.1953.0011
https://doi.org/10.3367/UFNr.0118.197602h.0339
https://doi.org/10.3367/UFNr.0118.197602h.0339
https://doi.org/10.12737/stp-74202106

