EVOLUTION OF THE STRATOSPHERIC POLAR VORTEX AS EVIDENCED BY THE WINTERS 2022–2024
Abstract and keywords
Abstract (English):
The paper examines the variation in the stratospheric polar vortex (SPV) area and the high-latitude stratosphere temperature from November to March for the winter periods 2022–2023 and 2023–2024 against the background of average long-term values of these parameters from 1979 to 2024. In 2022–2023, the SPV area significantly exceeded the climatic values in January and December, and a decrease in the SPV area occurred a month later than the climatic norm. This was accompanied by extremely low temperatures in the polar stratosphere in the first half of winter and a record-breaking “hot” sudden stratospheric warming (SSW) in the second half of winter. In the winter period 2023–2024, no extreme SPV and temperature values were observed, but four SSW episodes were recorded during the winter period, three of which were major. We analyze SPV areas, temperatures in the stratosphere, activity of planetary waves, and discuss the reasons for the differences between the two winter seasons in terms of wave activity.

Keywords:
stratospheric polar vortex area, sudden stratospheric warmings, planetary waves, wave activity flux
Text
Text (PDF): Read Download
References

1. Andrews D., Taylor F., McIntyre M. The influence of atmospheric waves on the general circulation of the middle atmosphere. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 1987, vol. 323, iss. 1575, pp. 693–705. DOI:https://doi.org/10.1098/rsta.1987.0115.

2. Antokhina O.Yu., Gochakov A.V., Zorkaltseva O.S., Antokhin P.N., Krupchatnikov V.N. Rossby wave breaking in the stratosphere: Part I — Climatology and long-term variability. Atmospheric and Oceanic Optics. 2024, vol. 37, no. 4, pp. 514–52. DOI:https://doi.org/10.1134/S1024856024700696

3. Baldwin M.P., Dunkerton T.J. Stratospheric harbingers of anomalous weather regimes. Science. 2001, vol. 294, pp. 581–584.

4. Baldwin M., Ayarzaguena B., Birner T., Butchart N., Butler A., Charlton-Perez A., Sudden stratospheric warmings. Rev. Geophys. 2021, vol. 59. DOI:https://doi.org/10.1029/2020RG000708.

5. Bushra N., Rohli R.V. An objective procedure for delineating the circumpolar vortex. Earth and Space Science. 2019, vol. 6, no. 5, pp. 774–783. DOI:https://doi.org/10.1029/2019EA000590.

6. Cámara A., Albers J., Birner T., Garcia R., Hitchcock P., Kinnison D., Smith A. Sensitivity of sudden stratospheric warmings to previous stratospheric conditions. J. Atmos. Sci. 2017, vol. 74, no. 9, pp. 2857–2877. DOI:https://doi.org/10.1175/JAS-D-17-0136.1.

7. Didenko K.A., Ermakova T.S., Koval A.V., Pogoreltsev A.I. Diagnostics of nonlinear interactions of stationary planetary waves. Scientific notes of the Russian State Hydrometeorological University. 2019, no. 56. DOI:https://doi.org/10.33933/2074-2762-2019-56-19-29. [In Russian].

8. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., et al. The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society. 2020, vol. 146, pp. 1999–2049. DOI:https://doi.org/10.1002/qj.3803.

9. Hitchcock P., Simpson I.R. The downward influence of stratospheric sudden warmings. J. Atmos. Sci. 2014, vol. 71, pp. 3856–3876. DOI:https://doi.org/10.1175/JAS-D-14-0012.1.

10. Holton J.R., Tan H.-C. The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci. 1980, no. 37, pp. 2200–2208. DOI:https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2.

11. Hoskins B.J., McIntyre M.E., Robertson A.W. On the use and significance of isentropic potential vorticity maps. Quarterly Journal of the Royal Meteorological Society. 1985, vol. 111, no. 470, pp. 877–946. DOI:https://doi.org/10.1002/qj.49711147002.

12. Jadin E.A., Zyulyaeva Yu.A. Interannual variations in the total ozone, stratospheric dynamics, extratropical SST anomalies and predictions of abnormal winters in Eurasia. International Journal of Remote Sensing. 2010, vol. 31, pp. 851–866. DOI:https://doi.org/10.1080/01431160902897874.

13. Kandieva K.K., Aniskina O.G., Pogoreltsev A.O., Zorkaltseva O.S., Mordvinov V.I. Effect of Madden–Julian oscillation and quasi-biennial oscillation on the dynamics of extratropical stratosphere. Geomagnetism and Aeronomy. 2019, vol. 59, no. 1, pp. 105–114. DOI:https://doi.org/10.1134/S0016793218060063.

14. Kidston J., Scaife A., Hardiman S., Mitchell D., Butchart N., Baldwin M., Gray L. Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geosci. 2015, vol. 8, pp. 433–440. DOI:https://doi.org/10.1038/ngeo2424.

15. Kuchar A., Öhlert M., Eichinger R., Jacobi C. Large-ensemble assessment of the Arctic stratospheric polar vortex morphology and disruptions. Weather and Climate Dynamics. 2024, vol. 5, no. 3, pp. 895–912. DOI:https://doi.org/10.5194/wcd-5-895-2024.

16. Lawrence Z., Manney G. Characterizing stratospheric polar vortex variability with computer vision techniques. J. Geophys. Res.: Atmos. 2018, vol. 123, no. 3, pp. 1510–1535. DOI:https://doi.org/10.1002/2017JD027556.

17. Lawrence Z., Perlwitz J., Butler A., Manney G., Newman P., Lee S., Nash E. The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss. JGR Atmosphere. 2020, vol. 125, no. 22. DOI:https://doi.org/10.1029/2020JD033271.

18. Limpasuvan V., Hartmann D. L., Thompson D. W., Jeev K., Yung Y. L. Stratosphere-troposphere evolution during polar vortex intensification. Geophys. Res. 2005, vol. 110. DOI:https://doi.org/10.1029/2005JD006302.

19. Lu Q., Rao J., Shi C., Ren R., Liu Y., Liu S. Stratosphere-troposphere coupling during stratospheric extremes in the 2022/23 winter. Weather Climat. Extrem. 2023, vol. 42. DOI:https://doi.org/10.1016/j.wace.2023.100627.

20. McIntyre M.E., Palmer T.N. Breaking planetary waves in the stratosphere. Nature. 1983, vol. 305, no. 5935, pp. 593–600.

21. Nash E., Newman P., Rosenfield J., Schoeberl M. An objective determination of the polar vortex using Ertel’s potential vorticity. J. Geophys. Res. 1996, vol. 101, pp. 9471–9478. DOI:https://doi.org/10.1029/96JD00066.

22. Plumb R.A. On the three-dimensional propagation of stationary waves. J. Atmos. Sci. 1985, vol. 42, no. 3, pp. 217–229. DOI:https://doi.org/10.1175/1520-0469(1985)042<0217:OTTDPO>2.0.CO;2.

23. Qian L. Rao J., Shi C., Liu S. Enhanced stratosphere-troposphere and tropics-Arctic couplings in the 2023/24 winter. Nature. Communications Earth & Environment. 2024, vol. 5. DOI:https://doi.org/10.1038/s43247-024-01812-x.

24. Schoeberl M.R., Hartmann D.L. The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science. 1991, vol. 251, no. 4989, pp. 46–52. DOI:https://doi.org/10.1126/science.251.4989.46.

25. Smith K., Polvani L., Tremblay L. The impact of stratospheric circulation extremes on minimum Arctic sea ice extent. J. Climate. 2018, vol. 31, no. 18, pp. 7169–7183. DOI:https://doi.org/10.1175/JCLI-D-17-0495.1.

26. Vargin P.N., Koval A.V., Guryanov V.V., Kirushov B.M. Large-scale dynamic processes during the minor and major sudden stratospheric warming events in January–February 2023. Atmos. Res. 2024, vol. 308. DOI:https://doi.org/10.1016/j.atmosres.2024. 107545.

27. Vyatkin A.N., Zorkaltseva O.S., Mordvinov V.I. Influence of El Niño on parameters of the middle and upper atmosphere over Eastern Siberia according to reanalysis and model data in winter. Solar-Terrestrial Physics. 2024, vol. 10, iss. 1, pp. 40–48. DOI:https://doi.org/10.12737/stp-101202406.

28. Zhang P., Wu Y., Simpson I., Smith K., Zhang X., De B., Callaghan P. A stratospheric pathway linking a colder Siberia to Barents-Kara Sea sea ice loss. Sci. Adv. 2018, vol. 4, no. 7. DOI:https://doi.org/10.1126/sciadv.aat6025.

29. Zorkaltseva O. S., Antokhina O. Yu., Antokhin P. N. Long-term variations in parameters of sudden stratospheric warmings according to ERA5 reanalysis data. Atmospheric and Oceanic Optics. 2023, vol. 36, no. 4, pp. 370–378. DOI:https://doi.org/10.1134/S1024856023040206.

30. Zou C., Zhang R. Arctic Sea ice loss modulates the surface impact of Autumn Stratospheric Polar Vortex stretching events. Geophys. Res. Lett. 2024, vol. 51, no. 3. DOI:https://doi.org/10.1029/2023GL107221.

31. Zyulyaeva Yu.A., Zhadin E.A. Analysis of three-dimensional Eliassen-Palm fluxes in the lower stratosphere. Russ. Meteorol. Hydrol. 2009, vol. 34, no. 8, pp. 483–490.

32. URL: https://disk.yandex.ru/d/IkG02E1Qb-Uq1g (accessed March 10, 2025).

33. URL: https://bit.ly/4fYrC3u (accessed March 10, 2025).

Login or Create
* Forgot password?