MOUNTAINOUS REGIONS OF THE RUSSIAN ARCTIC AS A PLATFORM FOR SPACE WEATHER RESEARCH
Abstract and keywords
Abstract (English):
Due to the structural features of the geomagnetic field, Earth’s subpolar regions are the most affected by cosmic ray variations and other space weather phenomena. High grounds located in these regions are especially promising in terms of space weather research. Nowadays, there are only two high-altitude subpolar space weather observatories highly sensitive to solar activity, both located in Antarctica. In the Russian Arctic, we have several mountainous regions with geophysical conditions similar to that of the Antarctic ice sheet. In this paper, we calculate physical quantities that determine conditions for space weather observation in these regions and explore the expediency of building new scientific stations there. We show that establishment of the stations would enhance sensitivity of space weather observatory network and increase the number of detectable solar proton events.

Keywords:
the Arctic, space weather, cosmic rays, solar activity, solar modulation, ground-level enhancements, neutron monitors
Text
Text (PDF): Read Download
References

1. Alken P., Thébault E., Beggan C.D., Amit H., Aubert J., Baerenzung J., et al. International geomagnetic reference field: The thirteenth generation. Earth, Planets and Space. 2021, vol. 73, pp. 1–25. DOI:https://doi.org/10.1186/s40623-020-01288-x.

2. Bazilevskaya G.A., Usoskin I.G., Flückiger E.O., Harrison R.G., Desorgher L., Bütikofer R., et al. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 2008, vol. 137, pp. 149–173. DOI:https://doi.org/10.1007/s11214-008-9339-y.

3. Chen X., Xu S., Song X., Huo R., Luo X. Astronaut radiation dose calculation with a new galactic cosmic ray model and the AMS‐02 data. Space Weather. 2023, vol. 21, no. 4, e2022SW003285. DOI:https://doi.org/10.1029/2022SW003285.

4. Danilova O.A., Ptitsyna N.G., Tyasto M.I., Sdobnov V.E. Variations in cosmic ray cutoff rigidities during the March 8–11, 2012 magnetic storm (CAWSES II period). Solar-Terrestrial Physics. 2023, vol. 9, iss. 2, pp. 81–87. DOI:https://doi.org/10.12737/szf-92202310.

5. Gerontidou M., Katzourakis N., Mavromichalaki H., Yanke V., Eroshenko E. World grid of cosmic ray vertical cut-off rigidity for the last decade. Adv. Space Res. 2021, vol. 67, no. 7, pp. 2231–2240. DOI:https://doi.org/10.1016/j.asr.2021.01.011.

6. Gleeson L.J., Axford W.I. Solar modulation of galactic cosmic rays. Astrophys. J. 1968, vol. 154, pp. 1011–1026. DOI:https://doi.org/10.1086/149822.

7. Kato C., Kihara W., Ko Y., Kadokura A., Kataoka R., Evenson P., et al. New cosmic ray observations at Syowa station in the Antarctic for space weather study. J. Space Weather and Space Climate. 2021, vol. 11, no. 31, 12 p. DOI:https://doi.org/10.1051/swsc/2021005.

8. Mishev A.L., Usoskin I.G. Current status and possible extension of the global neutron monitor network. J. Space Weather and Space Climate. 2020, vol. 10, no. 17, 11 p. DOI:https://doi.org/10.1051/swsc/2020020.

9. Mishev A.L., Kocharov L.G., Usoskin I.G. Analysis of the ground level enhancement on 17 May 2012 using data from the global neutron monitor network. J. Geophys. Res.: Space Phys. 2014, vol. 119, no. 2, pp. 670–679. DOI:https://doi.org/10.1002/2013JA019253.

10. Mishev A., Poluianov S., Usoskin I. Assessment of spectral and angular characteristics of sub-GLE events using the global neutron monitor network. J. Space Weather and Space Climate. 2017, vol. 7, A28, 17 p. DOI:https://doi.org/10.1051/swsc/2017026.

11. Mishev A.L., Koldobskiy S.A., Kovaltsov G.A., Gil A., Usoskin I.G. Updated neutron-monitor yield function: bridging between in situ and ground-based cosmic ray measurements. J. Geophys. Res.: Space Phys. 2020, vol. 125, no. 2, e27433. DOI:https://doi.org/10.1029/2019JA027433.

12. Nuntiyakul W., Sáiz A., Ruffolo D., Mangeard P.S., Evenson P., Bieber J.W., et al. Bare neutron counter and neutron monitor response to cosmic rays during a 1995 latitude survey. J. Geophys. Res.: Space Phys. 2018, vol. 123, no. 9, pp. 7181–7195. DOI:https://doi.org/10.1029/2017JA025135.

13. Poluianov S., Batalla O. Cosmic-ray atmospheric cutoff energies of polar neutron monitors. Adv. Space Res. 2022, vol. 70, no. 9, pp. 2610–2617. DOI:https://doi.org/10.1016/j.asr.2022.03.037.

14. Poluianov S.V., Usoskin I.G., Mishev A.L., She M.A., Smart D.F. GLE and sub-GLE redefinition in the light of high-altitude polar neutron monitors. Solar Phys. 2017, vol. 292, no. 176, 7 p. DOI:https://doi.org/10.1007/s11207-017-1202-4.

15. Poluianov S., Batalla O., Mishev A., Koldobskiy S., Usoskin I. Two new sub-GLEs found in data of neutron monitors at South Pole and Vostok: On 09 June 1968 and 27 February 1969. Solar Phys. 2024, vol. 299, no. 6, 23 p. DOI:https://doi.org/10.1007/s11207-023-02245-z.

16. Potgieter M.S. Solar modulation of cosmic rays. Living Reviews in Solar Physics. 2013, vol. 10, no. 10, 66 p. DOI:https://doi.org/10.12942/lrsp-2013-3.

17. Rao U.R., McCracken K.G., Venkatesan D. Asymptotic cones of acceptance and their use in the study of the daily variation of cosmic radiation. J. Geophys. Res. 1963, vol. 68, no. 2, pp. 345–369. DOI:https://doi.org/10.1029/JZ068i002p00345.

18. Reames D.V. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 1999, vol. 90, no. 3, pp. 413–491. DOI:https://doi.org/10.1023/A:1005105831781.

19. Simpson J.A. The cosmic ray nucleonic component: The invention and scientific uses of the neutron monitor. Space Sci. Rev. 2000, vol. 93, no. 1, pp. 11–32.

20. Tsyganenko N.A. A magnetospheric magnetic field model with a warped tail current sheet. Planetary Space Sci. 1989, vol. 37, no. 1, pp. 5–20. DOI:https://doi.org/10.1016/0032-0633(89)90066-4.

21. URL: https://www.mathworks.com/products/aerospace-toolbox.html (accessed March 10, 2025).

22. URL: https://tools.izmiran.ru/cutoff (accessed March 10, 2025).

23. URL: https://intermagnet.org/metadata/#/map (accessed March 10, 2025).

Login or Create
* Forgot password?