UDC 621.396
The block task of targeting (CR) carriers in the disarming strategic operation of the attacking side's nuclear forces is being studied. The article is a further development in terms of accounting for the blockiness arising from the grouping of attack carriers by range and belonging to one of the parts of the nuclear triad. The minimum mathematical expectation of the number of warheads (BB) of the defend-ing side (in megaton terms) is used as an efficiency criteri-on, which, with a given guarantee, will be delivered in re-sponse to the attacking targets. The relationship between the blocks of the CR matrix is carried out using a penalty function that takes into account the difference in the values of the target variables in the intersecting parts of neighbor-ing blocks. The results of a numerical experiment to verify the practical convergence of B.T.Polyak's method in a model example are presented and the acceleration coeffi-cient due to parallelization is calculated. To test the hypothesis that the asymptotic acceleration coefficient will be equal, it is necessary to use a multipro-cessor computing complex (MVC) with parallel data transmission to processors. This research is supposed to be carried out in a separate paper. The results of the statisti-cal experiment show that the acceleration coefficient is greater than unity, and subsequently asymptotically equal to n, which has so far been proven only theoretically. It is shown that the posed block CR problem can be solved by the method of B.T.Polyak. The main result of the work is the decomposition of the problem based on the method of B.T.Polyak, which can serve as a methodological basis for parallelizing the problem.
block assignment problem, penalty for mismatch of block assignment, decomposition method based on B.T.Polyak's algorithm, parallelization of the problem based on decomposition
Работа основана на результатах из [1], [2] и является ее дальнейшим развитием в части учета блочности, возникающей из группирования носителей нападения по дальности действия и принадлежности к одной из частей ядерной триады. Такие задачи распределения целевых каналов по групповым целям применительно к задачам флота изучались в [3]. Поставленная в [4] блочная задача ЦР может быть решена методом Б.Т.Поляка [4]. Основным результатом работы является декомпозиция задачи на основе метода Б.Т. Поляка, который может служить методической основой распараллеливания задачи. Классическая постановка задачи целераспредееления изучалась нами в [5].
В общетеоретическом плане блочные постановки задачи о назначении могут использоваться как основа построения соответствующих цифровых платформ распределения заданий по исполнителям [6, 7]. Поэтому декомпозиция блочных ТЗ, к которым относится задача ЦР в обезоруживающей СОЯС [8], поставленная в [9], является новой и актуальной задачей, а ее решение методом Б.Т.Поляка может служить основой для построения соответствующей схемы распараллеливания, основанной на численном методе решения.
II. Блочная задача ЦР носителей в обезоруживающей СОЯС
Следуя [10] предположим, что исходя из принятого нашим государством (сторона ) ненападения первым на другие страны, когда противник наносит удар первым (наиболее тяжелые условия для обороняющегося), в качестве показателя эффективности боевых действий стороны
целесообразно принять количество боевых блоков (ББ) обороняющейся стороны
, которое с заданной гарантией
будет доставляться в ответных действиях к объектам нападающего
. При этом нападающий будет стремится минимизировать количество ядерных средств в ответных действиях обороняющегося
:
|
. |
(1) |
где
|
. |
(2) |
1. Vatamanyuk O.A., Gribov A.A., Morozov A.V., Perevozchikov A.G., Yanochkin I.E. (2022): The task of planning a fire strike as a submodular programming task // Scientific Bulletin of the Higher School of East Kazakhstan Region, No. 4 (4), pp.95-104.
2. Vatamanyuk O.A., Morozov A.V., Perevozchikov A.G., Skakodub K.R., Yanochkin I.E. (2023): The task of distributing target air defense channels in an area as a non-linear programming task // Scientific Bulletin of the Higher School of Economics, No. 2 (6), pp.130-142.
3. Volgin N.S. Operations Research. parts 1, 2. St. Petersburg: Publishing House of the N.G.Kuznetsov VMA, 1999.
4. Polyak B.T. Introduction to optimization, Moscow: Nauka Publ., 1983.
5. Lesik A.I., Perevozchikov A.G., Reshetov V.Yu. On the problem of distributing different types of defense equipment according to the criterion of loss difference// TvSU Bulletin, series: Applied Mathematics, No. 2. 2019. pp.26-39.
6. Lesik I.A., Perevozchikov A.G. Dynamic model of the software development market based on the task of assigning bottlenecks // Economics and mathematical methods. Volume 57, No. 4, 2021. pp.108-116.
7. Lesik I.A., Perevozchikov A.G. Reducing the dynamic model of the software market to a block problem of convex programming //Economics and Mathematical Methods. Vol. 59. No. 1. 2023. pp.126-137.
8. Rocket and space defense systems of the Russian Federation. The training manual. At 3 P.M. 1. Rocket and space threats to the military security of the Russian Federation. Creation and development of missile and space defense systems / Edited by Dr. O.Y. Aksenov, Doctor of Technical Sciences, Moscow: HSE Publishing House, 2018, 266 p.
9. Rocket and space defense systems of the Russian Federation. The training manual. At 3 p.m. 3. Fundamentals of the design of rocket and space defense systems and facilities / Edited by Dr. O.Y. Aksenov, Doctor of Technical Sciences, Moscow: HSE Publishing House, 2018, 229 p.
10. Potapov A.N. Topology of system relations of functioning of radio-electronic information processing facilities for special purposes / A.N. Potapov, Yu.Y. Gromov // Devices and systems. Management, monitoring, diagnostics. No. 7. Nauchlittekhizdat, Moscow. 2023 –pp.12-17.
11. Potapov A.N. The mechanism of formation and identification of single-place system relations of the functioning of radioelectronic objects of special-purpose information processing / A.N. Potapov, Yu.Y. Gromov// Devices and systems. Management, control, diagnostics. No. 5. Nauchlittekhizdat, Moscow. 2023 – pp.41-45.
12. Gorelik A. L. Selection and recognition based on radar information / A. L. Gorelik, Y. L. Barabash, O. V. Krivosheev, S. S., Epstein; edited by A. L. Gorelik. – M.: Radio and Communications, 1990.-240 p.
13. Achkasov A.V. Osobennosti proyektirovaniya mikroskhem, vypolnennykh po gluboko-submikronnym tekhnologiyam / Achkasov A.V. i dr. // Modelirovaniye sistem i protsessov. 2022. T. 15. No. 4. S. 7-17.
14. Kanashchenkov A.I. Protection of radar systems from interference. Status and development trends / Edited by A. I. Kanashchenkov and V. I. Merkulov. Moscow: Radiotekhika, 2003. 416 p.
15. Khizhnyak A.V., Belous A. A., Bely A.S. Identification of trajectory information based on the use of fuzzy automatic classification methods in the task of combining route information / Reports of the BSUIR. – Minsk: Military Academy of the Republic of Belarus. – 2023.
16. Bao Nguyen Fung, Dang Quang Hieu Synthesis of an algorithm for trajectory processing of objects by methods of data clustering theory / Izvestiya vuzov Rossii. Radio electronics. 2021. Vol. 24, No. 2. pp. 54-67.
17. Potapov A.N. Privedeniye dannykh k nechetkomu vidu v podsisteme planirovaniya svyazi sistemy podderzhki prinyatiya resheniy /A.N. Potapov, A.L. Nachalov // Sbornik materialov Vserossiyskoy (ochno-zaochnoy) nauchnoy konferentsii prepodavateley, aspirantov i studentov «Telekommu-nikatsionnyye tekhnologii: Aktualizatsiya i resheniye problem podgotovki vysokokvalifitsirovannykh kadrov v sovremennykh usloviyakh (posvyashchennoy Godu Khabarovskogo instituta infokommunikatsiy)» (Khabarovsk, 26-27 dekabrya 2022g.), Khabarovsk: KHIIK (filial) SibGUTI», 2022. - S.197-204.
18. R. Jenssen. An Information Theoretic Approach to Ma-chine Learning. A Diss. for the Deg. of D. Scientiarum. Department of Physics University of Tromso, NO-9037 Tromso, Norway, 2024.
19. Khasanov V.R. Intellectual support for the management of rational planning for the development of electronic warfare equipment by specialists for information processing in the context of information interaction / Khasanov V.R. // Proceedings of the International Scientific and Practical Conference "Nano-bio-technologies. Thermal power engineering. Mathematical modeling "NaBiTeM-2024" (February 27-28, 2024). Section: Mathematical modeling. Publishing house of LGTU, 2024. – pp. 252-258.
20. Kleinman D.L. On an Iterative Technique for Riccati Equation Computation // IEEE Trans. On Automatic Control. 1923. Vol. 13, №1. P.20-25.
21. Yagodkin A.S. Development of algorithms and programs for the analysis of electrical characteristics of BIS / Yagodin A.S., et al.// Modeling of systems and processes. 2022. Vol. 15. No. 4. pp. 136-148.



