The article substantiates application of exhaust and transition diffusors to increase the effectiveness and decrease the noise of gas turbine units. It presents assessment of methods of increasing the effectiveness of exhaust and transition diffusors of industrial gas turbine units, and formulates the task for mathematical modeling of flow in conic diffusor with high flare and over-critical angle of expansion with flow stabilization by tangent twisted blow.
gas turbine unit, aerodynamic noise, diffusor, flow vortex, pressure increase ratio, slowing rate, tangent blow, expansion angle of diffusor.
1. Введение
В настоящее время все более широкое распространение получают газотурбинные энергетические установки (ГТУ) малой и средней мощности блочномодульного исполнения. Основой для их создания чаще всего служат конвертированные авиационные и транспортные газотурбинные двигатели, особенностью которых является значительная расходная скорость при выходе из турбины (CT = 180–250 м/с) [1–3], а для двухконтурных тригенерационных установок, созданных на базе авиационных двигателей с малой степенью двухконтурности m = 0,3–1,0 (отношением расхода воздуха во втором контуре к расходу через газогенератор), еще и за компрессором низкого давления [4, 5]. Столь высокие скорости приводят, с одной стороны, к большим потерям энергии в выхлопном устройстве, а с другой — к высокому уровню шума, генерируемого вытекающей струей, величина которого оценивается зависимостью [6, 7]:
LP =80lgCT + 20lgFT + 10lgFT − K,
где: ρT — плотность газа за турбиной, FT — площадь выходного сечения турбины, K — параметр, определяемый температурой струи (для высокотемпературных струй K = 44 дБ, для низкотемпературных — K = 57 дБ).
1. Eliseev Yu.S., Manushin E.A., Mikhal’tsev V.E. Teoriya i proektirovanie gazoturbinnykh i kombinirovannykh dvigateley i ustanovok [The theory and design of gasturbine engines and combined systems]. Moscow, Izd-vo MGTU im. N.E. Baumana Publ., 2000. 640 p.
2. Shlyakhtenkoi S.M. Sosunov V.A. Teoriya dvukhkonturnykh turboreaktivnykh dvigateley [Theory of turbojet engines]. Moscow, Mashinostroenie Publ., 1979. 432 p.
3. Inozemtsev A.A. Energeticheskie i promyshlennye gazoturbinnye ustanovki na baze aviatsionnykh TRDD OAO «Aviadvigatel». Printsipy konvertatsii [Energeticheskie and industrial gas turbines on the basis of aircraft turbofan]. Tyazheloe mashinostroenie [Heavy Engineering]. 2009, I. 9, pp. 2.
4. Varaksin A.Yu., Arbekov A.N., Inozemtsev A.A. Trigeneratsionnyy tsikl kak put’ sozdaniya mnogotselevykh statsionarnykh energeticheskikh ustanovok na osnove konversii dvukhkonturnykh turboreaktivnykh dvigateley [Trigeneratsionny cycle as a way to create a multi-purpose stationary power plants, based on the conversion of turbojet engines]. DAN. 2014, V. 458, I 5, pp. 539.
5. Arbekov A.N., Varaksin A.Yu., Inozemtsev A.A. Vliyanie stepeni dvukhkonturnosti bazovogo turboreaktivnogo dvigatelya na vozmozhnost’ sozdaniya konversionnykh trigeneratsionnykh dvukhkonturnykh energeticheskikh ustanovok [Effect bypass ratio turbojet base on the possibility of creating conversion of double-trigeneration power plants]. Teplofizika vysokikh temperatur [High Temperature]. 2015, V. 53, I. 6, pp. 928-933.
6. Belov S.V. Okhrana okruzhayushchey sredy [Environment]. Moscow, Vyssh. Shk. Publ., 1991. 319 p.
7. Tupov V.B. Snizhenie shumovogo vozdeystviya ot oborudovaniya v energetike [Reducing the noise impact on the equipment in the energy sector]. Moscow, 2004, 258 p.
8. Giampaolo A. Gas Turbine Handbook: Principles and Practices Third Editions 2006 by The Fairmont Press. 451 p.
9. Verevkin N.N., Lashkov A.I. O sposobakh umen’sheniya poter’ davleniya v diffuzorakh s bol’shimi uglami raskrytiya [On ways of reducing the pressure loss in the diffuser with large opening angles]. Prom. Aerodinamika [Industrial Aerodynamics]. 1956, I. 7, pp. 175-178.
10. Frankfurt M.O. Eksperimental’noe issledovanie kharakteristik konicheskikh diffuzorov s tangentsial’nym sduvom [Experimental study of the characteristics of conical diffusers with tangential blowing]. Promyshlennaya aerodinamika [Industrial Aerodynamics]. 1986, I.1 (33), pp. 156-168.
11. Migay V.K., Gudkov E.I. Proektirovanie i raschet vykhodnykh diffuzorov turbomashin [Design and calculation of output diffusers turbomachinery]. Leningrad, Mashinostroenie Publ., 1981. 272 p.
12. Deych M.E., Zaryankin A.E. Gazodinamika diffuzorov i vykhlopnykh patrubkov turbomashin [Gasdynamics diffusers and exhaust pipes turbomachinery]. Moscow, Energiya Publ., 1970. 384 p.
13. Osipov M.I., Arbekov A.N. Rezul’taty eksperimental’nogo issledovaniya techeniya v diffuzore s zakrutkoy potoka vduvom gaza [The results of experimental studies of flow in the diffuser with a swirling flow gas injection]. Gazoturbinnye i kombinirovannye ustanovki [Gas turbine and combined installation]. Moscow, 1987, pp. 30-31.
14. Osipov M.I., Arbekov A.N. Investigation of turbulent structure and stability of flow in conical wide-angle diffusers with tangential swirling injection. 4th World conference on experimental heat transfer, fluid mechanics and thermodynamics. Brussels. 1997.
15. Waitman B.A., Reneau L.R., Kline S.I. Effects of inlet conditions on performance of two - dimensional subsonic diffusers. ASME, Jour. of Basic Engineering. 1961. № 9. P. 349-360.
16. Senoo Y., Kawaguchi N., Nagata T. Swirl Flow in Conical Diffusers . Bull. JSME. - 1978. Vol. 21. № 151. P. 112-119.
17. Gibson A. On the Flow of Water through pipes and passages having converging, or diverging boundaries. Proceedings of the Royal Society, Engineering, London, 1912. vol. 83, pp.137-141.
18. Nicoll W.B., Ramaprian B.R. Performance of conical diffusers with annular injection at inlet. ASME, Jour. of Basic Engineering. 1970. № 12. P. 827-835.
19. Kutateladze S.S., Leont’ev A.I. Teplomassoobmen i trenie v turbolentnom pogranichnom sloe [Heat and mass transfer and friction in turbolentnom boundary layer]. Moscow, Energoatomizdat, 1985. 320 p.