from 01.10.2008 until now
Russian Federation
In the first and second parts of the work there were considered mainly properties of Dupin cyclide, and given some examples of their application: three ways of solving the problem of Apollonius using only compass and ruler, using the identified properties of cyclide; it is determined that the focal surfaces of Dupin cyclid are degenerated in the lines and represent curves of the second order – herefrom Dupin cyclide can be defined by conic curve and a sphere whose center lies on the focal curve. Polyconic compliance of these focal curves is identified. The formation of the surface of the fourth order on the basis of defocusing curves of the second order is shown. In this issue of the journal the reader is invited to consider the practical application of Dupin cyclide’s properties. The proposed solution of Fermat’s classical task about the touch of the four spheres by the fifth with a ruler and compass, i.e., in the classical way. This task is the basis for the problem of dense packing. In the following there is an application of Dupin cyclide as a transition pipe element, providing smooth coupling of pipes of different diameters in places of their connections. Then the author provides the examples of Dupin cyclide’s application in the architecture as a shell coating. It is shown how to produce membranes from the same cyclide’s modules, from different modules of the same cyclide, from the modules of different cyclides, from cyclides with the inclusion of other surfaces, special cases of cyclides in the educational process. The practical application of the last problem found the place in descriptive geometry at the final geometrical education of architects in the "Construction of surfaces". Here such special cased of cyclides as conical and cylindrical surfaces of revolution.
descriptive geometry, cyclic surfaces, canal surface, Dupin cyclide, Fermat’s task, shell, architecture.
В работах [23–25] были рассмотрены основные геометрические свойства цикдиды Дюпена [4–6; 8; 9; 11; 12; 20; 21; 29; 30]. В первой части [23] предлагаемой работы в качестве практического приложения циклид Дюпена рассматривалось построение окружности, касательной к трем данным окружностям — всемирно известная классическая задача Аполлония [9], когда данные окружности имели действительные радиусы.
Во второй части работы [24] рассмотрение свойств циклид Дюпена было продолжено. Предложена и доказана возможность задания циклиды Дюпена произвольным эллипсом в качестве линии центров множества образующих сфер и сферой с центром, принадлежащим этому эллипсу. Доказана достаточность этих сведений для построения циклиды Дюпена. Геометрически доказано, что фокальные линии циклид представляют собой не что иное, как кривые второго порядка. Дано графоаналитическое представление фокальных линий циклид. Показано поликоническое соответствие фокальных линий циклид Дюпена, которое рассмотрено во всех четырех случаях. Предложено формирование гиперболической поверхности четвертого порядка с использованием одной или двух первичных кривых второго порядка, в данном случае эллипсов.
1. Argunov B.I., Balk M.B. Geometricheskie postroenija na ploskosti [Geometric constructions on the plane]. Moscow, Uchpedgiz Publ., 1957. (in Russian).
2. Berzhe M. Geometrija [The geometry]. V. 1-2. Moscow, Mir Publ., 1984.
3. Vygodskij M.Ja. Analiticheskaja geometrija [Analytical geometry]. Moscow, Fizmatgiz Publ., 1963. 523 p. (in Russian).
4. Gil´bert D., Kon-Fossen S. Nagljadnaja geometrija [Visual geometry]. Moscow, Leningrad, Obyedinennoe nauchnotehnicheskoe izdatel´stvo NKTP SSSR, Glavnaja redakcija obshhetehnicheskoj literatury i nomografii Publ., 1936.
5. Glogovskij V.V. β-otobrazhenie [β-display]. L´vovskaja sekcija inzhenernoj grafiki [The Lviv section of engineering graphics], 1961. I. 2, pp. 27-34.
6. Grjaznov Ja.A. Otsek kanalovoj poverhnosti kak obraz cilindra v rasslojaemom obrazovanii [Bay canal surface as a cylinder in rassloennom education]. Geometrija i grafika [Geometry and graphics], 2012, V. 1, I. 1, pp. 17-19. DOI:https://doi.org/10.12737/2077. (in Russian).
7. Ivanov G.S. Konstruktivnyj sposob issledovanija cvojstv parametricheski zadannyh krivyh [Constructive way to study the properties of parametrically defined curves]. Geometrija i grafika [Geometry and graphics], 2012, V. 2, I. 3, pp. 3-6. DOI:https://doi.org/10.12737/6518. (in Russian).
8. Klein F. Vysshaja geometrija [Higher geometry]. Moscow, Leningrad, GONTI Publ., 1939.
9. Krivoshapko S.N., Ivanov V.N. Enciklopedija analiticheskih poverhnostej [Encyclopedia of analytical surfaces]. Moscow, LIBROKOM Publ., 2010. (in Russian).
10. Levickij V.S. O teme «Soprjazhenija» v kurse «Inzhenernaja grafika» [About "Mates" in the course "Engineering graphics"]. Sbornik nauchno-metodicheskih statej po nachertatel´noj geometrii i inzhenernoj grafike [Collection of scientific and methodological articles on descriptive geometry and engineering graphics]. Moscow, Vysshaja shkola Publ., 1980, pp. 44-51. (in Russian).
11. Nadolinnyj V.A. Analiticheskie metody v konstruirovanii poverhnostej [Analytical methods in the design of surfaces]. Kiev, KPI Publ., 1981.
12. Ognev A.V. O geometricheskih zadachah na postroenie, svodimyh k zadache Ferma [About geometric problems on geometric construction, reducible to the problem of Fermat]. Tr. Kazan. him.-tehn. in-ta Publ., 1960. I. 29, pp. 155-157.
13. Perepelkin D.I. Kurs jelementarnoj geometrii [A course of elementary geometry]. Moscow, GTTI Publ., 1949, V. 2. 468 p.
14. Salkov N.A. Analiticheskoe predstavlenie proektnyh gorizontalej poverhnostnyh form avtomobil´nyh dorog [Analytical representation of design contours to surface shapes of roads]. Aktual´nye problemy gradostroitel´stva i zhilishhno-kommunal´nogo kompleksa. Mezhdunarodnaja nauchno-prakticheskaja konferencija 15-16 maja 2003 g. [Actual problems of urban development and housing and communal services. International scientific-practical conference on 15-16 May 2003]. Moscow, MIKHiS Publ., 2003, pp. 61-62. (in Russian)
15. Salkov N.A. Geometricheskoe i matematicheskoe modelirovanie virazhnyh uchastkov avtomobil´nyh dorog [Geometric and mathematical modeling of curved sections of roads]. Trudy MADI: Vychislitel´naja geometrija i mashinnaja grafika v zadachah SAPR avtomobilestroenija i avtomobil´nyh dorog [Proceedings MADI: Computational geometry and computer graphics in the CAD tasks automobile and highways]. Moscow, 1989, pp. 4-9. (in Russian).
16. Salkov N.A. Geometricheskoe i programmno-matematicheskoe modelirovanie linejnyh i poverhnostnyh form avtomobil´nyh dorog. Kand. Diss. [Geometric and mathematical modelling of linear and superficial forms of roads. Cand. Diss.]. Moscow, MADI Publ., 1990. (in Russian).
17. Salkov N.A. Geometricheskie parametry grohota [The geometrical parameters of the rumble]. Prikl. geometrija i inzh. grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel´nik Publ., 1987, I. 43, pp. 69-71. (in Russian).
18. Salkov N.A. Grafo-analiticheskoe reshenie nekotoryh chastnyh zadach kvadratichnogo programmirovanija [Graph-analytic Solution of Some Special Problems of Quadratic Programming]. Geometrija i grafika [Geometry and graphics]. 2014, V. 2, I. 1, pp. 3-8. DOI:https://doi.org/10.12737/3842. (in Russian).
19. Salkov N.A. Kinematicheskoe sootvetstvie vrashhajushhihsja prostranstv [Kinematic compliance of rotating spaces]. Geometrija i grafika [Geometry and graphics], 2013, V. 1, I. 1, pp. 4-10. DOI:https://doi.org/10.12737/2074. (in Russian).
20. Salkov N.A. Ob osobennostjah osi torovoj poverhnosti peremennogo radiusa [About the features of the axis of the torus sleeve surface of variable radius]. Prikl. geometrija i inzh. grafika. [Applied Geometry and Engineering Graphics]. Kiev, Budivel´nik Publ., 1982, I. 33, pp. 79-80. (in Russian).
21. Salkov N.A. O nekotoryh zakonomernostjah, imejushhih mesto pri kasanii sfer [Some of the regularities that occur when the spheres touch]. Prikl. geometrija i inzh. grafika [Applied Geometry and Engineering Graphics]. Kiev, Budivel´nik Publ., 1981, I. 32, pp. 113-115. (in Russian).
22. Salkov N.A. Parametricheskaja geometrija v geometricheskom modelirovanii [Parametric Geometry in Geometric Modeling]. Geometrija i grafika [Geometry and graphics], 2014, V. 2, I. 3, pp. 7-13. DOI:https://doi.org/10.12737/6519. (in Russian).
23. Salkov N.A. Svojstva ciklid Djupena i ih primenenie. Chast´ 1 [Properties of Cyclide Dyupen and Their Application. Part 1]. Geometrija i grafika [Geometry and graphics], 2015, V. 3, I. 1, pp. 16-25. DOI:https://doi.org/10.12737/10454. (in Russian).
24. Salkov N.A. Svojstva ciklid Djupena i ih primenenie. Chast´ 2 [Properties of Cyclide Dyupen and Their Application. Part 2]. Geometrija i grafika [Geometry and graphics], 2015, V. 3, I. 2, pp. 9-22. DOI:https://doi.org/10.12737/12164. (in Russian).
25. Salkov N.A. Svojstva ciklid Djupena i ih primenenie. Chast´ 3 [Properties of Cyclide Dyupen and Their Application. Part 3]. Geometrija i grafika [Geometry and graphics], 2015, V. 3, I. 2, pp. 3-14. DOI:https://doi.org/10.12737/17345. (in Russian).
26. Chernyshova Z.T., Glogovskij V.V. Proekcionnoe reshenie zadachi Ferma o kasanii sfer [Projection the solution of Fermat’s problem about the touch of the spheres]. L´vovskaja sekcija inzh. grafiki [The Lviv section of the ing. graphics], 1958, V. 1, pp. 51-57.
27. Chetveruhin N.F. Proektivnaja geometrija [Projective geometry]. Moscow, Uchpedgiz Publ., 1961. (in Russian).
28. Enciklopedija jelementarnoj matematiki. Kniga chetvertaja - Geometrija [Encyclopaedia of elementary mathematics. Book four]. Moscow, Nauka Publ., 1966. (in Russian).
29. Jakubovskij A.M. Issledovanija analiticheskogo metoda zadanija ciklid Djupena pri vyjavlenii ih iz kongrujencij okruzhnostej. Trudy UDN. V. 53, i. 4, Prikladnaja geometrija. Moscow, 1971, pp. 26-40. (in Russian).
30. Dupin Ch. Développements de géometrié, Paris, 1813.