The present work objective is searching for such forms of the cardboard corrugation which could effectively absorb the impact load on a cardboard sheet, both vertical and horizontal. The re-search subject is the depreciation efficiency of the cardboard package with a cell and an alternative (with MS-profile) structure by the action of shock across and along the honeycomb. Meas-urement and comparation of the deformation rate, as well as the shock absorption capacity of the sample cartons with the standard and alternative MS-corrugation are considered as the investigation tasks. The samples were under the impact force. Shock absorbing properties of the multilayer cardboard packaging in size of 127 × 127 mm were evaluated under the following conditions: drop height, 610 mm; impact speed, 3.5 m/s; falling weight, 12.5 kg; pressure load, 340 kg. In this case, pressing force, impact energy, deformation value is recorded. As a result of the experiments, it was found that a three- and five-layer sample with MS-profile has better shock absorbing properties (as compared to a standard cellular cardboard of the same thickness). The application of seven- and nine-layer cardboard with MS-profile is inappropriate due to a minor advantage over a three- and five-layer sample.
cardboard packing, cellular structure, impact energy, MS-profile, depreciation, deformation.
Одно из важных условий сохранности упакованных продуктов — хорошие амортизирующие свойства тары. К упаковке предъявляются и такие требования, как технологичность изготовления, доступность, дешевизна и экологичность. Всем перечисленным требованиям удовлетворяет картон. Амортизирующие свойства такой тары зависят не только от толщины картонных листов, но и от их внутренней структуры [1]. Гофрированные картонные листы склеиваются в виде пчелиных сот, что позволяет компоновать плиты различной толщины [2, 3]. К перечисленным достоинствам такой упаковки следует добавить хорошую амортизацию нагрузки, которая действует вертикально картонному листу вдоль соты [4, 5].
Недостатком картонной упаковки с сотовой структурой является ухудшение амортизирующих свойств, если вектор нагрузки направлен не вдоль соты, не перпендикулярно листу. Из-за многочисленных, не поддающихся учету факторов воздействие нагрузки на упаковку строго вдоль соты — редкий случай, чаще всего нагрузка действует под углом к соте. В этом случае упаковка может разрушиться и не защитит от удара продукты [6]. Приходится ограничивать полезную массу контейнера, чтобы при транспортировке или кантовании не повредить защищаемый продукт [7].
1. Coles, R., ed. Upakovka pishchevykh produktov. [Food Packaging Technology.] St. Petersburg: Professiya, 2008, 416 p. (in Russian).
2. Heimbs, S. Middendorf, P., Maier, M. Honeycomb sandwich material modeling for dynamic simulations of air-craft interior components. Proceedings of the 9th international LS-DYNA users conference. Dearborn, 2006, pp. 201-206.
3. Elsayd, E.-A., Basily, B.-B. A Continuous Folding Process for Sheet Materials. International Journal of Materials & Product Technology, 2004, no. 21 (1/2/3), pp. 217-238.
4. Antypas, I. R., Partko, S.A. Sravnenie amortiziruyushchikh svoystv gofrirovannoy kartonnoy upakovki raznoy struktury pri deystvii vertikal´noy nagruzki. Sravnenie amortiziruyushchikh svoystv gofrirovannoy kartonnoy upakovki raznoy struktury pri deystvii vertikal´noy nagruzki [Comparison of damping properties of corrugated cardboard packaging of various structures under vertical load action.] Sostoyanie i perspektivy razvitiya sel´skokhozyaystvennogo mashinostroeniya: sb. statey 8-y mezhdunar. nauch.-prakt. konf. 3-6 marta 2015 g. v ramkakh 18-y mezhdunar. agroprom. vystavki «Interagromash-2015». [State and prospects of development of agricultural machinery: Proc. 8th Int. Sci.-Pract. Conf. 3-6 March, 2015, within the framework of the 18th Int. Agro-industrial Exhibition “Interagromash-2015”.] Rostov-on-Don, 2015, pp. 232-234 (in Russian).
5. Antypas, I. R., Partko, S.A. Dempfiruyushchie svoystva gofrirovannogo upakovochnogo kartona sotovoy struktury. [Damping properties of the corrugated honeycomb packaging board.] Innovatsionnye tekhnologii v mashinostroenii i metallurgii : sb. statey VII nauch.-prakt. konf. [Innovative technologies in machine building and metallurgy: Proc. VII Sci.-Pract. Conf.] Rostov-on-Don, 2015, pp. 65-71 (in Russian).
6. Basily, B.-B., Elsayd, E.-A. Developments in sheet folding technology and applications. Proceedings of 2004 the NSF Design, Service and Manufacturing Grantees and Research Conference. Birmingham, Alabama, 2004, January, pp. 6-10.
7. Hanlon, J.F., Kelsey, R.J., Forcinio, H.; Zhavner, V.L., ed. Upakovka i tara: proektirovanie, tekhnologii, prime-nenie. [Packaging and containers: designing, technologies, application.] St. Petersburg: Professiya, 2006, 632 p. (in Russian).
8. Torre, L., Kenny, J.-M. Impact testing and simulation of composite sandwich structures. Composite Structures, 2000, vol. 50, iss. 3, pp. 257-256.
9. Vaidya, U.K., et al. Impact response of integrated hollow core sandwich composite panels. Composites. Part A: Applied Science & Manufacturing, 2000, no. 31, pp. 761-772.
10. Vanchakov, M.V., Keyzer, P.M., Dubovy, V.K. Tekhnologicheskoe oborudovanie dlya proizvodstva kartonnoy i bumazhnoy tary. [Technological equipment for cardboard and paper packaging production.] St. Petersburg: GTURP, 2014, 133 p. (in Russian).
11. Bangay, S. From virtual to physical reality with paper folding. Computational Geometry: Theory and Applications, 2000, no. 15, pp. 161-174.