BRAKING MODE SIMULATION OF INDUCTION MOTOR OF VARIABLE-FREQUENCY DRIVE USING STATOR CURRENT HARMONICS
Abstract and keywords
Abstract (English):
The work objective is to study electrodynamic processes in the frequency-controlled drive (FCD) by the mathematical modeling method, in particular, in the two-current mode of the dynamic braking considering the 5th and 7th current harmonics of the in-duction motor (IM) stator. The features of forming IM stator current low frequencies (0.2-15 Hz) by the autonomous voltage inverter (AVI) followed by the additional electricity loss in the FCD, and the appearance of torque ripple on the IM shaft causing jerkiness of the actuating mechanism (AM) of the production machine (PM) executive device (ED) in the low speed zone and complicating their locating in the prearranged position, are given. It is hard to implement the FCD scheduled deceleration without trajectory correction at the friction forces ambiguity in the ED AM mobility links and availability of the torque ripple on the IM shaft. To solve this problem, the authors offer, first, to use a spatial-vector pulse-width modulation (SV PWM) with m-fold submodulation of the carrier frequency (CF) and without submodulation in the IM brak-ing mode. Secondly, it is reasonable to apply (momentarily in a low speed area) the principle of linearization by oscillation to reduce the K friction coefficient to a decreased value in the ED AM mobility links by the IM rotor microvibration due to the 5th and 7th harmonics of the stator current. Thus, the work on modeling FCD (in Matlab + Simulink software package) allows more accurately define the impact of the 5th and 7th harmonics of the IM stator current on the capability of the software implementation of the two-current mode of the FCD dynamic braking while reducing the total energy loss in the ED AM low-speed motion area. In addition, the applicability of the proposed solutions of the electric drives of mechatronic and robotic multipurpose systems with higher requirements for positioning in the basic AM – AVI circuits is confirmed.

Keywords:
voltage inverter, spatial-vector pulse-width modulation (SV PWM), stator current harmonics, torque ripple, two-current dynamic deceleration, submodulation of carrier frequency, electrical and heat losses, linearization by oscillation, positioning.
Text

В производственной практике — например, в промышленных роботах (ПР), манипуляторах, металлорежущих станках — могли бы более широко применяться частотно-управляемые электроприводы (ЧУЭП) на базе короткозамкнутого асинхронного двигателя (АД), функционирующие по схемотехническому решению [1]: автономный инвертор напряжения — асинхронный двигатель (АИН — АД). Однако в настоящее время использование ЧУЭП несколько ограничено рядом причин [1, 2, 3]. В частности, невозможно обеспечить необходимые механические характеристики АД в зоне низких и ползучих скоростей с учетом сил трения в направляющих движения исполнительного механизма (ИМ) рабочего органа (РО) технологической машины (ТМ). Известна [4] неоднозначность движущих сил ИМ, обусловленная пульсациями результирующего момента на валу АД при квазисинусоидальном питающем напряжении статора низкой частоты 0,2–15 Гц. Это ведет к формированию шагового режима вращения ротора, что объясняется следующим образом. Множество магнитных полей в статоре АД возбуждаются от гармоник тока — в основном, за счет взаимодействия полей 5-й и 7-й гармоник с основной гармоникой — и вращаются с различными скоростями и в различных направлениях [2]. Если рассматривать случайный характер изменения сил трения в звеньях подвижности ТМ в совокупности с формированием пульсирующего момента на валу АД, то представляется довольно сложным обеспечение заданного режима программного торможения АД.

 

Данная статья посвящена проблеме снижения влияния трения в звеньях подвижности на точность позиционирования ИМ ТМ за счет кратковременного использования результирующего (пульсирующего) момента полей 5-й и 7-й гармоник тока статора с основной гармоникой в режиме предоконечного торможения АД мощностью до 100 Вт. Принято, что структура ИМ промышленных роботов станочных систем является сложной, и в ней наибольшая интенсивность микродвижений звеньев наблюдается на частотах собственных колебаний fим, изменяющихся от 3 до 50 Гц [5]. По мнению авторов, данная задача может быть решена следующим образом. На конечной стадии режима торможения АД (например, транспортирующей степени подвижности с электроприводом в системе АИН — АД) предлагается формирование пульсирующего момента, изменяющее «эффективный» коэффициент трения звена подвижности ИМ в результате применения принципа «вибрационной линеаризации» коэффициента трения [7].

References

1. Sokolovskiy, G.G. Elektroprivody peremennogo toka s chastotnym regulirovaniem. [AC drives with frequency regulation.] Moscow: Akademiya, 2006, 273 p. (in Russian).

2. Perelmuter, V.M. Pryamoe upravlenie momentom i tokom dvigateley peremennogo toka. [Direct control of torque and AC motors current.] Kharkov: Osnova, 2004, 210 p. (in Russian).

3. Karnaukhov, N.F., Filimonov, M.N., Izyumov, A.I. Osobennosti formirovaniya tsiklicheskikh rezhimov chastotnogo elektroprivoda tekhnologicheskikh mashin v zone maloy skorosti dvizheniya ispolnitel´nogo mekhaniz-ma. [Generation features of cycle operations for production machine variable-frequency drive in low-velocity zone of actua-tor.] Vestnik of DSTU, 2012, no. 6 (67), pp. 76-86 (in Russian).

4. Filimonov, M.N., Karnaukhov, N.F. Uluchshenie dinamiki tormozheniya asinkhronnogo dvigatelya stanochnoy sistemy s chastotnym upravleniem. [Improvement of braking dynamics of the machine tool induction motor with frequency control.] Sovremennye problemy mashinostroeniya i vysokikh tekhnologiy : mat-ly. mezhdunar. nauch.-tekhn. konf., posvyashch. 75-letiyu Don. gos. tekhn. un-ta. [Current problems in Machine Engineering and high technologies: Proc. Int. Sci.-Tech. Conf. devoted to the 75th anniversary of DSTU.] Rostov-on-Don, 2005, vol. 1, pp. 236-242 (in Russian).

5. Dobrynin, S.A., Feldman, M.S., Firsov, G.I. Metody avtomatizirovannogo issledovaniya vibratsii mashin. [Methods of computer-aided study of machine vibration.] Moscow: Mashinostroenie, 1987, 224 p. (in Russian).

6. Demidov, S.V., et al., Demidov, S.V., ed. Elektromekhanicheskie sistemy upravleniya tyazhelymi metallorezhush-chimi stankami. [Electromechanical heavy machine tools control systems.] Leningrad: Mashinostroenie, 1986, 236 p. (in Rus-sian).

7. Panovko, Y.G. Lektsii po osnovam teorii vibratsionnykh mashin i tekhnologiy. [Lectures on the theory foundations of vibrating machines and technologies.] Moscow: Bauman MSTU Publ. House, 2008, 192 p. (in Russian).

8. Karnaukhov, N.F., Pudova, Y.V., Filimonov, M.N. Uluchshenie kharakteristik chastotnogo elektroprivoda tekhno-logicheskikh mashin v zone maloy skorosti dvizheniya ispolnitel´nogo mekhanizma. [Improving performance of variable-frequency electric drive of production machines in the actuator low speed motion area.] Molodezh´. Tekhnika. Kosmos: tr. IV Obshcheros. molodezh. nauch.-tekhn. konf.[Youth. Engineering. Space: Proc. IV All-Russian Youth Sci.-Tech. Conf. Bulletin of BSTU, 2012, no. 15, 380 p. (in Russian).

9. Braslavskiy, I.Y., Ishmatov, Z.S., Plotnikov, Y.V. Ispol´zovanie prilozheniya Simulink dlya otsenki potrebleniya elektroenergii asinkhronnym elektroprivodom. [Using Simulink application for estimating power consumption by asynchro-nous drive.] Proektirovanie inzhenernykh i nauchnykh prilozheniy v srede MATLAB: tr. II nauch. konf. [Designing engineer-ing and scientific applications in MATLAB: Proc. II Sci.Conf.] Moscow, 2004, part 5, pp. 1387-1394 (in Russian).

10. Karnaukhov, N.F, Filimonov, M.N., Derkachev, N.V. Osobennosti formirovaniya dvukhtokovogo dinamich-eskogo tormozheniya asinkhronnogo dvigatelya mekhatronnoy sistemy pri chastotnom upravlenii. [Features of forming two-current dynamic braking of mechatronic system asynchronous motor with frequency control.] Mekhatronika-2008: mat-ly IV mezhdunar. nauch.-prakt. stud. kollokviuma. [Mechatronics-2008: Proc. IV Int. Sci.-Pract. Student Colloquium.] Novocher-kassk, 2008, pp. 17-20 (in Russian).

11. Karnaukhov, N.F, Prus, V.A., Filimonov, M.N. Energeticheskie pokazateli elektroprivoda pri chastotnom sposobe upravleniya asinkhronnym dvigatelem. [Energy performance of electric drive with frequency control method of induction motor.] Tr. VIII Mezhdunar. nauch.-tekhn. konf. po dinamike tekhnologicheskikh sistem. [Proc. VIII Int. Sci.Eng. Conf. on dynamics of the technological systems.] Rostov-on-Don, 2007, vol. III, pp. 24-30 (in Russian).

12. Kotsegub, P.K. Sistema pozitsionnogo elektroprivoda s zadatchikom polozheniya. [Position electrodrive system with indexing mechanism.] Russian Electromechanics, 1982, no. 3, pp. 331-337 (in Russian).

13. Karnaukhov, N.F., Filimonov, M.N., Ushakov, S.A. Ustanovka dlya demonstratsii reklamno-informatsionnogo materiala i ustroystvo upravleniya peremeshcheniem nositelya informatsii: patent 36914 Ros. Federatsiya: G09F13/00 H02P7/36 H02P7/62 H02P7/74 H02H7/08 / [Demonstrator of marketing material and motion control device for data carrier.] Patent RF no. 36914, 2004 (in Russian).

Login or Create
* Forgot password?