STUDY ON EFFECT OF SOME GEOMETRIC TRANSFORMATIONS OF THE TRAILING EDGE OF AIRFOILS ON THEIR AERODYNAMIC PARAMETERS
Rubrics: MECHANICS
Abstract and keywords
Abstract (English):
The work objective is to evaluate how the geometric transfor-mations of the trailing edge of some airfoils affect the aerody-namic characteristics. Such transformations as the trailing edge thickening and rounding are considered. The performance of Wortmann FX 63-137, NACA 23024 и Clark Y is calculated. The effect of the trailing edge changes on their aerodynamic performance at Reynolds numbers from 200,000 to 1,000,000 is assessed. It is shown that the thickening of the trailing edge in-creases the drag coefficient up to some Reynolds number de-pendent on the airfoil, and thereafter it reduces. At that the in-crease of the lift coefficient is observed. The rounding of the trailing edge reduces both the lift and drag forces, and it can lead to the improvement of the airfoil lift-to-drag ratio for certain angles of attack. The data obtained can be used in the manufac-ture of blades with the profiles discussed.

Keywords:
airfoil, trailing edge transformations, aerodynamic parameters, lift coefficient, head drag coefficient.
Text

В настоящее время для расчета аэродинамических характеристик лопастей используются элемент-но-импульсная теория и метод несущей линии. Такой подход требует знания безразмерного коэффициента подъемной силы и безразмерного коэффициента лобового сопротивления крыльевых профилей, используемых в сечениях лопасти. Данные коэффициенты зависят от угла атаки атаки и числа Рейнольдса набегающего на лопасть потока.

При производстве лопастей для достижения идеально острой задней кромки ее толщина зачастую уменьшает-ся путем шлифовки, что представляет собой дорогой и трудоемкий процесс. Это предопределяет важность получения данных для оценки целесообразности проведения процесса заострения задней кромки лопасти

References

1. Minaylos, А. Vliyanie tolshchiny profilya i zadney kromki na pole techeniya i aerodinamicheskie kharakteristiki treugol´nogo kryla malogo udlineniya pri chisle M = 3. [Effect of profile thickness and trailing edge on flow field and aerodynamic characteristics of the narrow delta wing at M number = 3.] TsAGI Science Journal, 1976, vol. 7, no. 5, pp. 9-14 (in Russian).

2. Thompson, B.E., Whitelaw, J.-H. Flow-around airfoils with blunt, round, and sharp trailing edges. Journal of aircraft, 1988, vol. 25, iss. 4, pp. 334-342.

3. Van Dam, C.-P., Kahn, D.-L., Berg, D.-E. Trailing edge modifications for flatback airfoils. Albuquerque; Livermore: Sandia National Laboratories; Wind Energy Technology, 2008, 23 p.

4. Murcia, J.-P., Pinilla, Á. CFD Analysis of Blunt Trailing Edge Airfoils Obtained with Several Modification Methods. evista de ngenier a, 2011, iss. 33, pp. 14-24.

5. Sant, R., Ayuso, L., Meseguer, J. Influence of open trailing edge on laminar aerofoils at low Reynolds number. Journal of Aerospace Engineering. Proceedings of the Institution of Mechanical Engineers. Part G. 2012, vol. 227, iss. 9, pp. 1456-1467.

6. Selig, M.-S., McGranahan, B.-D. Wind tunnel aerodynamic tests of six airfoils for use on small wind turbines. Journal of solar energy engineering, 2004, vol. 126, iss. 4, pp. 986-1001.

7. Tummala, A., et al. A review on small scale wind turbines. Renewable and Sustainable Energy Reviews, 2016, vol. 56, pp. 1351-1371.

8. Kong, C., Bang, J., Sugiyama, Y. Structural investigation of composite wind turbine blade considering various load cases and fatigue life. Energy, 2005, vol. 30, iss. 11, pp. 2101-2114.

9. Timmer, W., van Rooy, R. Thick airfoils for HAWTs. Journal of Wind Engineering and Industrial Aerodynamics, 1992, vol. 39, iss. 1, pp. 151-160.

10. Grasso, F. Development of Thick Airfoils for Wind Turbines. Journal of Aircraft, 2013, vol. 50, iss. 3, pp. 975-981.

11. Piccirillo, A.-C. The Clark Y airfoil: A historical retrospective. SAE transactions, 2000, vol. 109, iss. 1, pp. 1016-1036.

12. Ganis, M.-L. CFD Analysis of the Characteristics of a Shrouded Turbine. Hamburg: Diplom.de, 2003, 73 p.

13. Spalart, P.-R., Allmaras, S.-R. A one equation turbulence model for aerodinamic flows. Recherche Aerospatiale, 1994, iSS. 1, pp. 5-21.

14. Atmosfera standartnaya. Parametry. GOST 4401-81. [GOST 4401-81. Standard atmosphere. Parameters.] Gosudarstvennyy komitet SSSR po standartam. [USSR State Standards Committee.] Moscow: Standartinform, 1981, 179 p. (in Russian).

Login or Create
* Forgot password?