BACKSCATTERING DYNAMICS DURING INTENSE GEOMAGNETIC STORM AS DEDUCED FROM YEKATERINBURG RADAR DATA: MARCH 17€�22, 2015
Abstract and keywords
Abstract (English):
This paper examines the spatio-temporal dynamics of backscattering signals during St. Patrick’s Day two-step intense geomagnetic storm from the Yekaterinburg Coherent Radar (YeKB-radar) data. It is found that a number of ground backscattering signals increased during the initial phase of the storm and decreased during the second step of its main phase and the first two days of its recovery phase. Changes in ionospheric backscattering signals started at the beginning of the main phase. During the first step, a six-hour sequence of ionospheric backscattering signals (BSi-signals), which shifted from far to close ranges while the storm was in progress. During the last 5 hours of the main phase and the first 3 hours of the recovery phase, the YeKB radar observed only signals scattering in the E region of the ionosphere. We conduct a complex analysis of data from the YeKB radar, ground-based ionospheric, riometric, and magnetic stations located within the radar field of view. The analysis shows that the observed backscattering dynamics was caused by the magnetosphere compression, expansion of convection vortices, impact ionization, and changes in atmospheric composition during the initial storm phase, first and second steps of the main phase, and the recovery phase, respectively.

Keywords:
intense geomagnetic storm, backscattering signals, radar field of view, absorption, ionospheric and geomagnetic disturbances, total electron content
Text
Text (PDF): Read Download

1. ВВЕДЕНИЕ

Несмотря на многолетние экспериментальные исследования, начатые с помощью ионозондов в двадцатые годы прошлого века, изучение ионосферных возмущений остается одной из наиболее приоритетных задач физики околоземного космического пространства [Buonsanto, 1999; Mendillo, 2006; Goodman, 2005]. Актуальность задачи обусловлена огромным влиянием ионосферы на телекоммуникационные системы, бесперебойная работа которых необходима для человечества. Проблемы, возникающие при решении этой задачи, связаны, прежде всего, с низким пространственным разрешением и потерей ионосферных данных во время больших магнитных бурь, а также с отсутствием детальной информации об электрических полях магнитосферного происхождения (магнитосферного динамо) и термосферных процессах, влияющих на развитие ионосферной бури. Часть этих проблем может быть устранена путем комплексного анализа данных, полученных различными инструментами в обследуемой области [Pokhotelov et al., 2008; Verhulst et al., 2014].

В обзоре [Mendillo, 2006] показано, что потерю и недостаточное пространственное разрешение данных по электронной концентрации в максимуме F2-слоя ионосферы (NmF2), полученных с помощью наземных ионозондов, можно компенсировать данными по полному электронному содержанию (ПЭС). Напомним, что по возмущениям критической частоты fоF2 этого слоя, вносящего основной вклад в ПЭС, определяют интенсивность и фазу ионосферной бури (см. например, [Брюнелли, Намгаладзе, 1988]). Пространственно-временная динамика электрических полей, возникающих в магнитосфере и передающихся вдоль силовых линий геомагнитного поля на ионосферные высоты, может быть детально изучена в областях, обследуемых радарами [Ribeiro et al., 2011]. В России такое комплексное исследование можно провести для области ионосферы, обследуемой Екатеринбургским радаром (ЕКБ-радаром) [Berngardt et al., 2015]. К сожалению, из-за малого числа GPS-приемников, размещенных в этой области, вариации ПЭС в ней могут использоваться только как вспомогательный инструмент, дающий информацию о возможных тенденциях изменения NmF2.

Геомагнитная буря, начавшаяся 17 марта 2015 г. и названная по дню начала бурей Святого Патрика, была 13-й сильной геомагнитной бурей 24-го солнечного цикла и первой, значение Dst-индекса в которой достигло уровня ниже -200 нТл [Kamide, Kusano, 2015]. Большинство опубликованных работ, посвященных ионосферным эффектам этой бури, основано на анализе данных спутниковых навигационных систем.

Анализируя данные системы ГЛОНАСС, Тертышников [2015] показал, что в первые 8 ч главной фазы бури ПЭС над Эльбрусом было выше, а в остальные 4 ч и последующие 4 дня восстановительной фазы ниже, чем средние значения этого параметра в марте 2015 г.

Авторы работы [Jacobsen, Andalsvik, 2016] использовали для проведения исследования значения ROTI (rate-of-TEC index), определенные по данным GNSS (Global Navigation Satellite System). Сопоставив пространственно-временную динамику ROTI и эквивалентных ионосферных токов, рассчитанных по данным сети IMAGE, авторы обнаружили, что самые сильные возмущения сигналов GNSS над Норвегией наблюдались на полярной границе авроральных электроджетов, и связали эти возмущения с процессами пересоединения в хвосте магнитосферы.

Базируясь на картах ROTI, полученных с помощью системы GPS в Северном полушарии, авторы работы [Cherniak, Zakharenkova, 2015] показали наличие связи между ионосферными неоднородностями, наблюдавшимися 15-20 марта 2015 г. на геомагнитных широтах 50-75/90° с индексами авроральной ак-тивности и мощностью, поставляемой в высокоширотную ионосферу высыпающимися частицами.

References

1. Astafyeva E., Zakharenkova I., Förster M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J. Geophys. Res. 2015, vol. 120, pp. 9023-9037. DOI:https://doi.org/10.1002/2015JA021629.

2. Baker K.B., Wing, S. A new magnetic coordinate system for conjugate studies at high latitudes. J. Geophys. Res. 1989, vol. 94, pp. 9139-9143.

3. Bargatze L.F., Baker D.N., McPherron R.L., Hones E.W.Jr. Magnetospheric Impulse Response for Many Levels of Geomagnetic Activity. J. Geophys. Res. 1985, vol. 90, no. A7, pp. 6387-6394.

4. Beletskiy A.B., Mikhalev A.V., Tashchilin M.A. et al. Optical observations of midlatitude upper atmosphere radiation during magnetic storms March 17, 2015. Mezhdunarodnyi simpozium “Atmosfernaya radiatsiya i dinamika” (MSARD - 2015). 23-26 iyunya 2015, Sankt-Peterburg-Petrodvorets [International Symposium “Atmospheric radiation and dynamics” (MSARD - 2015)]. 23-26 June 2015, St. Petersburg, Peterhof. Abstracts. St. Petersburg, 2015, p. 294. (In Russian).

5. Berngardt O.I., Zolotukhina N.A, Oinats A.V. Observations of field-aligned ionospheric irregularities during quiet and disturbed conditions with EKB radar: First results. Earth, Planets and Space. 2015, 67:143. DOI:https://doi.org/10.1186/s40623-015-0302-3.

6. Blagoveshchensky D.V., Maltseva O.A., Anishin M.M., Sergeeva M.A., Rogov D.D. Impact of the magnetic superstorm on March 17-19, 2015 on subpolar HF radio paths: Experiment and modeling. Adv. Space Res. 2016, vol. 58, pp. 835-846.

7. Blanchard G.T., Sundeen S., Baker K.B. Probabilistic identification of high-frequency radar backscatter from the ground and ionosphere based on spectral characteristics. Radio Sci. 2009, vol. 44, RS5012. DOI:https://doi.org/10.1029/2009RS004141.

8. Bland E.C., McDonald A.J., De Larquier S., Devlin J.C. Determination of ionospheric parameters in real time using SuperDARN HF Radars. J. Geophys. Res. 2014, vol. 119, pp. 5830-5846. DOI:https://doi.org/10.1002/2014JA020076.

9. Bryunelli B.E., Namgaladze A.A. Fizika ionosfery [Physics of the ionosphere]. Moscow, Nauka Publ., 1988. 528 p. (In Russian).

10. Buonsanto M.J. Ionospheric storms - a review. Space Sci. Rev. 1999, vol. 88, pp. 563-601.

11. Burke W.J., Huang C.Y., Marcos F.A., Wise J.O. Interplanetary control of thermospheric densities during large magnetic storms. J. Atmosph. Solar-Terr. Phys. 2007, vol. 69, no. 3, pp. 279-287.

12. Cherniak I., Zakharenkova I. Dependence of the high-latitude plasma irregularities on the auroral activity in-dices: a case study of 17 March 2015 geomagnetic storm. Earth, Planets and Space. 2015, 67:151. DOI:https://doi.org/10.1186/s40623-015-0316-x.

13. Dasso S., Gomez D., Mandrini C.H. Ring current decay rates of magnetic storms: A statistical study from 1957 to 1998. J. Geophys. Res. 2002, vol. 107, no. A5. DOI:https://doi.org/10.1029/2000JA000430.

14. Davies J.A., Lester M., Milan S.E., Yeoman T.K. A comparison of velocity measurements from the CUTLASS Finland radar and the EISCAT UHF system. Ann. Geophysicae. 1999, vol. 17, pp. 892-902.

15. Ericsson S., Ergun R.E., Carlson C.W., Peria W. The cross-polar potential drop and its correlation to the solar wind. J. Geophys. Res. 2000, vol. 105, no. 8, pp.18,639-18,654.

16. Fiori R.A.D., Koustov A.V., Boteler D., Makarevich R.A. PCN magnetic index and average convection ve-locity in the polar cap inferred from SuperDARN radar measurements. J. Geophys. Res. 2009, vol. 114, no. A07225. DOI: 10.1029/ 2008JA013964.

17. Goodman J.M. Space Weather & Telecommunications. Springer. New York, 2005, 382 p.

18. Ievenko I.B., Alekseev V.N. Substorm and storm effect on SAR-arc dynamics. Statistical analysis. Geomag-netizm i aeronomiya [Geomagnetism and Aeronomy]. 2004, vol. 4, no. 5, pp. 643-654. (In Russian).

19. Jacobsen K.S., Andalsvik Y.L. Overview of the 2015 St. Patrick’s day storm and its consequences for RTK and PPP positioning in Norway. J. Space Weather Space Clim. 2016, vol. 6, no. A9. DOI:https://doi.org/10.1051/swsc/2016004.

20. Kamide Y., Yokoyama N., Gonzalez W.D., Tsurutani B.T., Daglis I.A., Brekke A., Masuda S. Two-step devel-opment of geomagnetic storms. J. Geophys. Res. 1998, vol. 103, no A4, pp. 6917-6921.

21. Kamide Y., Kusano K. No Major Solar Flares but the Largest Geomagnetic Storm in the Present Solar Cycle. Space Weather. 2015, vol. 13, pp. 365-367. DOI: 10.1002/ 2015SW001213.

22. King J.H. Solar wind parameters and magnetospheric coupling studies. SolarWind-Magnetospheric Coupling / Eds. Y. Kamide, J.A. Slavin. Tokyo: Terra Scientific Publishing Company, 1986, pp. 163-177.

23. Le G., Lühr H., Anderson B.J., Strangeway R.J., Russell C.T., Singer H., Slavin J.A., Zhang Y., Huang T., Bromund K., Chi P.J., Lu G., Fischer D., Kepko E.L., Leinweber H.K., Magnes W., Nakamura R., Plaschke F., Park J., Rauberg J. Magnetopause erosion during the March 17, 2015, magnetic storm: Combined field-aligned currents, auroral oval, and magnetopause observations. 2016. DOI:https://doi.org/10.1002/2016GL068257. Available at http://onlinelibrary.wiley.com/doi/10.1002/2016GL068257/ full.

24. Liu J., Wang W., Burns A., Yue X., Zhang S., Zhang Y. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. 2016, vol. 121, pp. 727-744. DOI:https://doi.org/10.1002/2015JA021832.

25. Mager P.N., Berngardt O.I., Klimushkin D.Yu., Zolotukhina N.A., Mager O.V. First results of the high-resolution multibeam ULF wave experiment at the Ekaterinburg SuperDARN radar: Ionospheric signatures of coupled poloidal Alfvén and drift-compressional modes. J. Atmosp. Solar-Terr. Phys. 2015, vol. 130-131, pp. 112-126.

26. Makarevich R.A., Kellerman A.C., Bogdanova Y.V., Koustov A.V. Time evolution of the subauroral electric fields: a case study during a sequence of two substorms. J. Geophys. Res. 2009, vol. 114, A04312. DOI:https://doi.org/10.1029/2008JA013944.

27. Mendillo M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 2006, vol. 44, RG4001. DOI:https://doi.org/10.1029/2005RG000193.

28. Milan S. E., Lester M. Spectral populations in HF radar backscatter from the E region auroral electrojets. Ann. Geophys. 2001, vol. 19, pp. 189-204

29. Oinats A.V., Kurkin V.I., Nishitani N. Statistical study of medium-scale traveling ionospheric disturbances using SuperDARN Hokkaido ground backscatter data for 2011. Earth, Planets and Space. 2015, vol. 67:22. DOI:https://doi.org/10.1186/s40623-015-0192-4.

30. Podlesnyy S.V., Mikhalev A.V. Spectrophotometry of mid-latitude auroras in Eastern Siberia during February 27, 2014 and March 17, 2015 magnetic storms. Mezhdunarodnaya Baykal´skaya molodezhnaya nauchnaya shkola po funda-mental´noy fizike. Trudy XIV konferentsii molodykh uchenykh “Vzaimodeystvie poley i izluchenii s veshchestvom” [Baikal Young Scientists’ International School on Fundamental Physics. Proc. XIV Young Scientists Conference “Interaction of Fields and Radiation with Matter”]. Irkutsk, 2015, pp. 175-177. (In Russian).

31. Pokhotelov D., Mitchell C.N., Spencer P.S.J., et al. Ionospheric storm time dynamics as seen by GPS tomog-raphy and in situ spacecraft observations. J. Geophys. Res. 2008, vol. 113, A00A16. DOI:https://doi.org/10.1029/2008JA013109.

32. Polekh N.M., Zolotukhina N.A., Romanova E.B., Ponomarchuk S.N., Kurkin V.I., Podlesnyi A.V. Iono-spheric effects of magnetospheric and atmospheric disturbances on March 17-19, 2015. Geomagnetizm i aeronomiya [Geomag-netism and aeronomy]. 2016, vol. 56, no. 5, pp. 557-571. (In Russian).

33. Ponomarchuk S.N., Polekh N.M, Romanova E.B., Zolotukhina N.A., Kurkin V.I., Podlesniy A.V. The dis-turbances of ionospheric radio channel during magnetic storm on March 17-19, 2015. Proc. SPIE. 2015, 9680, 96805H. DOI: 10.1117/ 12.2203593.

34. Ponomarenko P.V., Waters C.L. Spectral width of SuperDARN echoes: measurement, use and physical interpretation. Ann. Geophys. 2006, vol. 24, no. 1, pp. 115-128. DOI: 10.5194/ angeo-24-115-2006.

35. Ribeiro A.J., Ruohoniemi J.M., Baker J.B.H., Clausen L.B.N., Larquier S. de, Greenwald R.A. A new approach for identifying ionospheric backscatter in midlatitude SuperDARN HF radar observations. Radio Sci. 2011, vol. 46, RS4011. DOI:https://doi.org/10.1029/2011RS004676.

36. Sharma A.S., Baker D.N., Borovsky J.E. Nonequilibrium Phenomena in the Magnetosphere: Phase Transition, Self-organized Criticality and Turbulence. Nonequilibrium Phenomena in Plasmas / Eds. A.S. Sharma, P.K. Kaw. Springer, 2005, pp. 3-22.

37. Solovyev S.I., Boroev R.I., Moiseev A.V., Du A., Yumoto K. Dynamics of the ionospheric electric currents, and auroral emission boundaries during strong magnetic storms. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2009, vol. 49, no. 4, pp. 472-482. (In Russian).

38. Spasojevic M., Fuselier S.A. Temporal evolution of proton precipitation associated with the plasmaspheric plume. J. Geophys. Res. 2009, vol. 114, no. A12201. DOI: 10.1029/ 2009JA014530.

39. Tertyshnikov A.V. Effect of magnetic storm of 17.03.2015 in the total electron content of the ionosphere above Elbrus. Geliogeofizicheskie issledovaniya [Heliogeophysical Research]. 2015, vol. 12, pp. 29-33. (In Russian).

40. Troshichev O.A., Janzhura A., Stauning P. Unified PCN and PCS indices: Method of calculation, physical sense, and dependence on the IMF azimuthal and northward components. J. Geophys. Res. 2006, vol. 111, A05208. DOI: 10.1029/ 2005JA011402.

41. Verhulst T., Sapundjiev D., Stankov S. The need for local, high resolution, multi instrument monitoring to study complex effects of space weather disturbances: a study of the events in February 2014. 40th COSPAR Scientific Assembly 2014. Absracts. Moscow, 2014, C1.3-0018-14.pdf.

42. URL: fttp://ftp.swpc.noaa.gov (accessed September 9, 2016).

43. URL: http://cdaweb.gsfc.nasa.gov (accessed September 9, 2016).

44. URL: http://www.intermagnet.org/index-eng. Php (accessed September 14, 2016).

45. URL: http://geo-phys.aari.ru/interface2.html (accessed September 9, 2016).

46. URL: http://space-weather.ru/index.php?page=iono-grammy (accessed September 23, 2016).

47. URL: http://omniweb.gsfc.nasa.gov/vitmo/cgm_vitmo.html (accessed September 12, 2016).

48. URL: www.solen. info/solar/old_reports (accessed September 12, 2016).

49. URL: http://guvi.jhuapl.edu/site/data/guvi-dataproducts.shtml (accessed September 12, 2016).

Login or Create
* Forgot password?