CORRELATION OF NEAR-EARTH PROTON ENHANCEMENTS >100 MEV WITH PARAMETERS OF SOLAR MICROWAVE BURSTS
Abstract and keywords
Abstract (English):
We analyze the relations between various combinations of peak fluxes and fluences of solar microwave bursts at 35 GHz recorded with the Nobeyama Radio Polarimeters during 1990–2015, and corresponding parameters of proton enhancements with E>100 MeV exceeding 0.1 pfu registered by GOES monitors in near-Earth environment. The highest correlation has been found between the microwave and proton fluences. This fact reflects a dependence of the total number of protons on the total duration of the acceleration process. In the events with strong flares, the correlation coefficients of proton fluences with microwave and soft X-ray fluences are higher than those with speeds of coronal mass ejections. The results indicate a statistically larger contribution of flare processes to acceleration of high-energy protons. Acceleration by shock waves seems to be less important at high energies in events associated with strong flares, although its contribution probably prevails in weaker events. The probability of a detectable proton enhancement was found to directly depend on the peak flux and duration of the microwave burst, that can be used for diagnostics of proton enhancements based on microwave observations.

Keywords:
proton events, solar flares, radio radiation
Text
Publication text (PDF): Read Download

ВВЕДЕНИЕ

Проблема происхождения солнечных протонных событий (СПС) и их диагностики активно обсуждается почти полвека [Bazilevskaya, 2009; Мирошниченко и др., 2013]. Вызванные солнечной активностью возмущения космической погоды могут представлять значительную угрозу для различных отраслей человеческой деятельности и здоровья людей. Потоки ускоренных до высоких энергий частиц опасны и для оборудования космических аппаратов, и для их экипажей. Первая экспедиция, прибывшая на Международную космическую станцию (МКС) 2 ноября 2000 г., подверглась воздействию мощнейшего СПС 8–10 ноября (см., например, [Lario et al., 2009; Logachev et al., 2016]). Образующиеся под действием солнечных космических лучей (СКЛ) в атмосфере Земли вторичные частицы могут также дать заметные дозы облучения членов экипажей и пассажиров трансконтинентальных авиарейсов, заходящих в высокие широты. Всплеск экстремальной солнечной активности в конце октября 2003 г. заставил изменить их трассы в тот период [Веселовский и др., 2004].

За ускорение частиц могут быть ответственны вспышечные процессы в активной области или ударные волны в более обширном пространстве [Cliver et al., 1989; Kallenrode, 2003; Aschwanden, 2012; Reames, 2013; Desai, Giacalone, 2016]. Эти две возможные области ускорения предполагаются удаленными и фактически независимыми друг от друга. Широко распространено мнение, что основным ускорителем протонов, достигающих орбиты Земли, являются головные ударные волны, возбуждаемые корональными выбросами (КВМ) со сверхальфвеновскими скоростями в верхней короне [Reames, 2009, 2013; Gopalswamy et al., 2014]. Это представление основано, в частности, на результатах анализа дисперсии скоростей солнечных частиц разных энергий. В результате такого анализа экстраполированное время выхода частиц от Солнца в межпланетное пространство обычно получается задержанным относительно вспышки, что считается аргументом в пользу их ускорения головными ударными волнами, движимыми КВМ. Исходя из гипотетических представлений о поршневом механизме возбуждения ударных волн, сторонники этой концепции сопоставляют свойства СПС с наблюдаемыми проявлениями, соответствующими предполагаемым в рамках данной гипотезы. Например, начало радиовсплеска II типа считается индикатором образования ударной волны, соответствующим переходу переднего края КВМ в сверхальфвеновский режим. На основании этих предположений делаются попытки связать свойства ударной волны, которой приписывается ответственность за ускорение протонов, с начальной частотой радиовсплеска II типа.

Однако ни в случае иного (например, импульсно-поршневого) механизма возбуждения ударных волн, ни при расположении источника радиовсплеска II типа на фланге ударного фронта такого соответствия не ожидается. Нами установлена более тесная, чем считалось ранее, взаимосвязь между развитием эруптивных вспышек и возбуждением ударных волн [Grechnev et al., 2013a, 2015b]. Следовательно, традиционное противопоставление ускорения частиц ударной волной и во вспышке может быть не вполне правомерным.

В ранних работах указывалось на соответствие между параметрами солнечных энергичных частиц и микроволновых всплесков [Croom, 1971, Акиньян и др., 1978]. Однако в статье [Kahler, 1982] эта корреляция была приписана «синдрому большой вспышки» — общему соответствию между энерговыделением в эруптивной вспышке и его различными проявлениями независимо от наличия физической связи между ними. Впоследствии возведение в абсолют ускорения частиц ударной волной привело к недооценке диагностических возможностей микроволновых всплесков. Тем не менее в ряде исследований сделан вывод о существенной роли вспышечных процессов в ускорении СКЛ и подтверждена перспективность диагностики СПС по данным о вспышечном радиоизлучении [Дайбог и др., 1987; Chertok, 1990; Melnikov et al., 1991; Isaeva et al., 2010]. С этой точки зрения важной представляется корреляция между параметрами частотного спектра микроволновых всплесков и энергетического спектра потоков протонов у Земли [Черток и др., 2009]. В работах [Grechnev et al., 2008; Klein et al., 2014] аргументировано преобладание вспышечного ускорения в экстремальном СПС 20 января 2005 г. В статьях [Grechnev et al., 2013b, 2015a] показана несостоятельность противопоставления источников ускоренных протонов в разных экстремальных событиях. Возникающая во время вспышки ударная волна может ускорить частицы значительно раньше, чем скорость КВМ превысит альфвеновскую. Освобождение ускоренных во вспышке частиц, захваченных в магнитный жгут КВМ, возможно лишь после его пересоединения с открытой магнитной структурой. Следовательно, задержанный относительно вспышки выход в межпланетное пространство ускоренных частиц свидетельствует в пользу их ускорения во вспышке, а не ударной волной, что изменяет вывод из результатов анализа дисперсии скоростей на противоположный. Таким образом, результаты последних лет показывают, что анализ соотношений между микроволновыми всплесками и протонными возрастаниями полезен и безотносительно к происхождению СПС.

В настоящей работе для выявления вклада двух возможных источников ускорения анализируются соотношения между параметрами вспышек и КВМ и СПС высоких энергий. Основными целями являются выяснение, между какими параметрами солнечных эруптивных событий и СПС корреляция наиболее высока, и выявление возможных закономерностей для оперативной диагностики СПС по данным микроволновых наблюдений.

В разделе 1 суммируются полученные нами ранее статистические результаты (1.1), перечисляются источники данных, характеризуются их отбор и подготовка (1.2). В разделе 2 анализируются зависимости вероятности СПС от мощности микроволнового всплеска (2.1) и его длительности (2.2), сравниваются корреляции между разными комбинациями максимумов потоков и флюенсов микроволновых всплесков и протонных возрастаний (2.3). В разделе 3 анализируются соотношения между разными параметрами солнечной эруптивной активности и флюенсами протонов. Полученные результаты обсуждаются в разделе 4.

References

1. Akin’yan S.T., Fomichev V.V., Chertok I.M. Estimates of solar proton flux intensity from integral parameters of microwave radio bursts. Geomagnetizm i Aeronomiya [Geomagnetism and Aeronomy]. 1978, vol. 18, pp. 577-582. (In Russian).

2. Aschwanden M.J. GeV particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci. Rev. 2012, vol. 171, iss. 1-4, pp. 3-21. DOI:https://doi.org/10.1007/s11214-011-9865-x.

3. Bazilevskaya G.A. On the early phase of relativistic solar particle events: are there signatures of acceleration mechanism? Adv. Space Res. 2009, vol. 43, pp. 530-536. DOI: 10.1016/ j.asr.2008.08.005.

4. Belov A. Properties of solar X-ray flares and proton event forecasting. Adv. Space Res. 2009, vol. 43, iss. 4, pp. 467-473. DOI:https://doi.org/10.1016//j.asr.2008.08.011.

5. Chertok I.M. On the correlation between the solar gamma-ray line emission, radio bursts and proton fluxes in the interplanetary space. Astron. Nachr. 1990, vol. 311, pp. 379-381. DOI:https://doi.org/10.1002/asna.2113110618.

6. Chertok I.M. Post-eruption particle acceleration in the corona: a possible contribution to solar cosmic rays. 24th International Cosmic Ray Conference. 1995, vol. 4, p. 78.

7. Chertok I.M., Grechnev V.V., Meshalkina N.S. On the relationship between spectra of solar and microwave bursts and near-Earth proton fluxes. Astronomy Reports. 2009, vol. 53, no. 11, pp. 1059-1069.

8. Cliver E.W., Forrest D.J., Cane H.V., et al. Solar flare nuclear gamma-rays and interplanetary proton events. Astrophys. J. 1989, vol. 343, pp. 953-970. DOI:https://doi.org/10.1086/167765.

9. Croom D.L. Solar microwave bursts as indicators of the occurrence of solar proton emission. Solar Phys. 1971, vol. 19, pp. 152-170. DOI:https://doi.org/10.1007/BF00148831.

10. Daibog E.I., Kurt V.G., Logachev Yu.I., Stolpovsky V.G., Zenchenko V.N., Melnikov V.F. Yield of electrons generated in solar flares. Izvestiya AN SSSR. Seriya fizicheskaya [Bull. of the Russian Academy of Sciences. Physics]. 1987, vol. 51, no. 10, pp. 1825-1827. (In Russian).

11. Daibog E.I., Melnikov V.F., Stolpovskii V.G. Solar energetic particle events from solar flares with weak impulsive phases of microwave emission. Solar Phys. 1993, vol. 144, pp. 361-372. DOI:https://doi.org/10.1007/BF00627600.

12. Desai M., Giacalone J. Large gradual solar energetic particle events. Living Rev. Solar Phys. 2016, vol. 13, pp. 3-132. DOI:https://doi.org/10.1007/s41116-016-0002-5.

13. Dierckxsens M., Tziotziou K., Dalla S., et al. Relationship between solar energetic particles and properties of flares and CMEs: statistical analysis of solar cycle 23 events. Solar Phys. 2015, vol. 290, pp. 841-874. DOI:https://doi.org/10.1007/s11207-014-0641-4.

14. Gopalswamy N., Xie H., Akiyama S., et al. Major solar eruptions and high-energy particle events during solar cycle 24. Earth, Planets and Space. 2014, vol. 66, article id. 104, 15 p. DOI:https://doi.org/10.1186/1880-5981-66-104.

15. Gopalswamy N., Mäkelä P.A., Akiyama S., et al. Large solar energetic particle events associated with filament eruptions outside of active regions. Astrophys. J. 2015, vol. 806, iss. 1, article id. 8, 15 p. DOI:https://doi.org/10.1088/0004-637X/806/1/8.

16. Grechnev V.V., Kurt V.G., Chertok I.M., Uralov A.M., Nakajima H., Altyntsev A.T., Belov A.V., Yushkov B.Yu, Kuznetsov S.N., Kashapova L.K., Meshalkina N.S., Prestage N.P. An extreme solar event of 20 January 2005: properties of the flare and the origin of energetic particles. Solar Phys. 2008, vol. 252, pp. 149-177. DOI:https://doi.org/10.1007/s11207-008-9245-1.

17. Grechnev V.V., Kiselev V.I., Uralov A.M., et al. An updated view of solar eruptive flares and the development of shocks and CMEs: history of the 2006 December 13 GLE-productive extreme event. Publ. Astron. Soc. Japan. 2013a, vol. 65, SP1, S9. DOI:https://doi.org/10.1093/pasj/65.sp1.S9.

18. Grechnev V.V., Meshalkina N.S., Chertok I.M., Kiselev V.I. Relations between strong high-frequency microwave bursts and proton events. Publ. Astron. Soc. Japan. 2013b, vol. 65, SP1, S4. DOI:https://doi.org/10.1093/pasj/65.sp1.S4.

19. Grechnev V.V., Kiselev V.I., Meshalkina N.S., Chertok I.M. Relations between microwave bursts and near-Earth high-energy proton enhancements and their origin. Solar Phys. 2015a, vol. 290, iss. 10, pp. 2827-2855. DOIhttps://doi.org/10.1007/s11207-015-0797-6.

20. Grechnev V.V., Uralov A.M., Kuzmenko I.V., Kochanov A.A., Chertok I.M., Kalashnikov S.S. Responsibility of a filament eruption for the initiation of a flare, CME, and blast wave, and its possible transformation into a bow shock. Solar Phys. 2015b, vol. 290, iss. 1, pp. 129-158. DOI:https://doi.org/10.1007/s 11207-014-0621-8.

21. Grechnev V.V., Uralov A.M., Kiselev V.I., Kochanov A.A. The 26 December 2001 solar eruptive event responsible for GLE63. II. Multi-loop structure of microwave sources in a major long-duration flare. Solar Phys. 2017, vol. 292, iss. 1, article id. 3, 27 p. DOI:https://doi.org/10.1007/s11207-016-1025-8.

22. Isaeva E.A., Melnikov V.F., Tsvetkov L.I. Dependence of the SCR proton flux estimate on radio burst parameters. Bull. Crimean Astrophys. Obs. 2010, vol. 106, pp. 26-30. DOI:https://doi.org/10.3103/S0190271710010043.

23. Kahler S.W. The role of the big flare syndrome in correlations of solar energetic proton fluxes and associated microwave burst parameters. J. Geophys. Res. 1982, vol. 87, pp. 3439-3448. DOI:https://doi.org/10.1029/JA087iA05p03439.

24. Kallenrode M.-B. Current views on impulsive and gradual solar energetic particle events. J. Phys. G. 2003, vol. 29, iss. 5, pp. 965-981.

25. Klein K.-L., Chupp E.L., Trottet G., Magun A., Dunphy P.P., Rieger E., Urpo S. Flare-associated energetic particles in the corona and at 1 AU. Astron. Astrophys. 1999, vol. 348, pp. 271-285.

26. Klein K.-L., Masson S., Bouratzis C., et al. The relativistic solar particle event of 2005 January 20: origin of delayed particle acceleration. Astron. Astrophys. 2014, vol. 572, id. A4, 8 p. DOI:https://doi.org/10.1051/0004-6361/201423783.

27. Lario D., Aran A., Decker R.B. Major solar energetic particle events of solar cycles 22 and 23: intensities close to the streaming limit. Solar Phys. 2009, vol. 260, iss. 2, pp. 407-421. DOI:https://doi.org/10.1007/s11207-009-9463-1.

28. Lario D., Aran A., Gómez-Herrero R., et al. Longitudinal and radial dependence of solar energetic particle peak intensities: STEREO, ACE, SOHO, GOES, and MESSENGER observations. Astrophys. J. 2013, vol. 767, pp. 41-59. DOI: 10.1088/ 0004-637X/767/1/41.

29. Livshits M.A., Belov A.V. When and where are solar cosmic rays accelerated most efficiently? Astron. Rep. 2004, vol. 48, pp. 665-677. DOI:https://doi.org/10.1134/1.1787069.

30. Logachev Yu.I., Bazilevskaya G.A., Vashenyuk E.V., et al. Catalogue of Solar Proton Events in the 23rd Cycle of Solar Activity (1996-2008). Moscow, Geophysical Center RAS Publ., 2016, 740 p. DOI: 10.2205/ ESDB-SAD-P-001.

31. Melnikov V.F., Podstrigach T.S., Dajbog E.I., Stolpovskij V.G. Nature of the relationship between the fluxes of solar cosmic ray electrons and protons and the parameters of microwave bursts. Cosm. Res. 1991, vol. 29, no. 1, pp. 87-94.

32. Miroshnichenko L.I., Vashenyuk E.V., Perez-Péraza J. Solar cosmic rays: 70 years of ground-based observation. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2013, vol. 53, no. 5, pp. 579-600. DOI:https://doi.org/10.7868/S00167 9401305012X. (In Russian).

33. Nakajima H., Sekiguchi H., Sawa M., et al. The radiometer and polarimeters at 80, 35, and 17 GHz for solar observations at Nobeyama. Publ. Astron. Soc. of Japan. 1985, vol. 37, no. 1, pp. 163-170.

34. Reames D.V. Solar release times of energetic particles in ground-level events. Astrophys. J. 2009, vol. 693, pp. 812-821. DOI:https://doi.org/10.1088/0004-637X/693/1/812.

35. Reames D.V. The two sources of solar energetic particles. Space Sci. Rev. 2013, vol. 175, iss. 1-4, pp. 53-92. DOI: 10.1007/ s11214-013-9958-9.

36. Sladkova A.I., Bazilevskaya G.A., Ishkov V.N., et al. Catalogue of Solar Proton Events 1987-1996. Moscow, Moscow University Press, 1998, 247 p.

37. Trottet G. E., Samwel S., Klein K.-L., et al. Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Solar Phys. 2015, vol. 290, iss. 3, pp. 819-839. DOI:https://doi.org/10.1007/s11207-014-0628-1.

38. Veselovsky I.S., Panasyuk M.I., Avdyushin S.I., Bazilevskaya G.A. Solar and heliospheric events in October-November 2003: causes and effects. Kosmicheskie issledovaniya [Cosmic Research]. 2004, vol. 42, pp. 435-488. DOI:https://doi.org/10.1023/B: COSM.0000046229.24716.02. (In Russian).

39. Veselovsky I.S., Myagkova I.N., Yakovchuk O.S. Dynamics of energetic spectra of solar proton events in 23 solar cycle. Astronomicheskii vestnik [Astron. Bull.]. 2012, vol. 46, no. 3, pp. 235-258. DOI:https://doi.org/10.1134/S0038094612030033. (In Russian).

40. URL: http://solar.nro.nao.ac.jp/norp/html/event (accessed March 10, 2017).

41. URL: ftp://ftp.swpc.noaa.gov/pub/warehouse (accessed March 10, 2017).

42. URL: http://www.wdcb.ru/stp/data/SPE (accessed March 10, 2017).

43. URL: http://solar.nro.nao.ac.jp/norh (accessed March 10, 2017).

44. URL: http://cdaw.gsfc.nasa.gov/CME_list (accessed March 10, 2017).

45. URL: http://lasco-www.nrl.navy.mil/daily_mpg (accessed March 10, 2017).

46. URL: http://cdaw.gsfc.nasa.gov/stereo/daily_movies (accessed March 10, 2017).

47. URL: http://sdo.gsfc.nasa.gov/data/aiahmi (accessed March 10, 2017).

48. URL: http://iszf.irk.ru/~grechnev/papers/protons_microwaves/Table.htm (accessed March 10, 2017).

49. URL: ftp://solar-pub.nao.ac.jp/pub/nsro/norp/xdr (accessed March 10, 2017).

50. URL: http://satdat.ngdc.noaa.gov/sem/goes/data/new_avg (accessed March 10, 2017).

Login or Create
* Forgot password?