Irkutsk, Irkutsk region, Russian Federation
Irkutsk, Irkutsk region, Russian Federation
We studied the effect of different levels of membrane-bound hemoglobin on the level of red-cell membrane proteins and also their interrelation in patients with essential hypertension with and without metabolic syndrome. It was found that high membrane-bound hemoglobin is closely related to the low level of high-density lipoproteins and high level of low-density lipoproteins in patients with essential hypertension complicated with metabolic syndrome. In patients with essential hypertension not complicated with metabolic syndrome high membrane-bound hemoglobin is related to the increased prothrombin time and decreased blood urea nitrogen. In patients with essential hypertension com-plicated with metabolic syndrome high membrane-bound hemoglobin significantly influences the level of membrane contractile proteins (actin, tropomiosine). In patients with essential hypertension without metabolic syndrome high membrane-bound hemoglobin is accompanied by the decrease of structural and integral membrane proteins levels (anion-transport protein and protein 4.1). As the result of quantitative changes in these proteins and change in their interrelations in patients with ssential hypertension complicated with metabolic syndrome more intensive disorders of structural and functional organization of red-cell membrane can appear.
essential hypertension, red-cell membrane proteins, membrane-bound hemoglobin, metabolic syn-drome
1. KagavaY (1985). Biomembranes [Biomembrany], 304.
2. KazyonnovAM, MaslovaMN (1987) Structural and biochemical properties of membranes of non-nucleated erythrocytes [Strukturno-biokhimicheskie svoystva mem-bran bezjyadernykh eritrotsitov]. Fiziol. zhurnal SSSR, 73(12), 1587-1594.
3. KlenovaNA, FatenkovVN, FatenkovOV (2002). Ische-mic heart disease [Ishemicheskaya bolezn’ serdtsa], 60-73.
4. KlimovA N, NikulchevaNG (1995). Lipids, lipopro-teins and atherosclerosis [Lipidy, lipoproteidy i ateroskle-roz], 304.
5. Kuznik BI (2010). Cellular and molecular mechanisms of regulation of the hemostatic system under normal and pathological conditions [Kletochnye i molekulyarnye mekhanizmy regulyatsii sistemy gemostaza v norme i patologii], 832
6. MenshchikovaEB, ZenkovNK, LankinVZ, BondarIA, TrufakinVA (2008). Oxidative stress. Pathological conditions and diseases [Kletochnye i molekulyarnye mekhanizmy regulyatsii sistemy gemostaza v norme i patologii], 284.
7. NovitskiyVV, RyazantsevaNV, StepovayaEA (2003). Clinical pathomorphism of erythrocytes [Klinicheskiy patomorfoz eritrotsitov], 208.
8. PivovarovYI, KuznetsovaEE, KoryakinaLB, Gorok-hovaVG, KurilskayaTE (2013). Reaction of the membrane of red blood cells in patients with angina and hypertension in transient ischemia [Reaktsiya membrany eritrotsitov u bol’nykh stenokardiey napryazheniya i gipertonicheskoy bolezn’yu pri kratkovremennoy ishemii]. Tromboz, gemo-staz i reologiya, (2), 39-45.
9. PivovarovYI, KurilskayaTE, SergeyevaAS (2014). Method of mathematical processing of a set of protein bands obtained by electrophoresis [Sposob matematich-eskoy obrabotki nabora belkovykh polos, poluchennykh s pomoshch’yu elektroforeza]. Bulleten’ Vostocno-Sibirskogo naucnogo centra, (3), 101-104.
10. ChazovIE (ed.) (2009). Recommendations of the experts of All-Russian Scientific Society of Cardiology for the diagnosis and treatment of metabolic syndrome (second revision) [Rekomendatsii ekspertov Vserossiys-kogo nauchnogo obshchestva kardiologov po diagnostike i lecheniyu metabolicheskogo sindroma (vtoroy pere-smotr)], 32.
11. SergeyevaAS, PivovarovYI, BabushkinaIV (2015). Erythrocyte membrane proteins and metabolic syndrome [Belki membrany eritrotsitov i metabolicheskiy sindrom].Bulleten’ Vostocno-Sibirskogo naucnogo centra, 4 (104), 12-17.
12. StorozhokSA, SannikovAG, ZakharovYM (1997). Mo-lecular structure of the erythrocyte membranes and their mechanical properties [Molekulyarnaya struktura mem-bran eritrotsitov i ikh mekhanicheskie svoystva], 140.
13. ToktamysovaZS, BirzhanovaRK (1990). On the membrane-bound hemoglobin [O membranosvyazannom gemoglobine]. Biofizika, 35(6), 1019-1020.
14. UshakovaIP, VasilenkoIA, SerebrennikovaGA, EvstigneyevaRP (1980). Interaction of hemoglobin and bilayer phospholipid membranes [Vzaimodeystvie ge-moglobina s bisloynymi fosfolipidnymi membranami]. Bioorganicheskaya khimiya,(7), 1062-1067.
15. .UshakovaIP, VasilenkoIA, SerebrennikovaGA, EvstigneyevaRP (1982). Interaction of hemoglobin with negatively charged phospholipids [Vzaimodeystvie ge-moglobina s otritsatel’no zaryazhennymi fosfolipidami]. Bioorganicheskaya khimiya, (2), 177-179.
16. FallerM, ShieldsD (2006). Molecular biology of the cell. Guidelines for physicians [Molekulyarnaya biologiya kletki. Rukovodstvo dlya vrachey],256.
17. SperlingIA, RyazantsevaNV, NovitskiyVV, TkachenkoSB (2008). Modification of the structure of erythrocyte membrane at toxic effect of hematotropic xenobiotics [Modifikatsiya struktury membrany er-itrotsitov pri toksicheskom deystvii gematotropnykh ksenobiotikov]. Voprosy biologicheskoy, meditsinskoy i farmatsevticheskoy khimii, (1), 14-18
18. ChesnokovaNP, PonukalinaEV, BizenkovaMN (2006). Molecular and cellular mechanisms of inactivation of free radicals in biological systems [Molekulyarno-kletochnyy mekhanizm inaktivatsii svobodnykh radikalov v biologicheskikh sistemakh]. Uspekhi sovremennogo estestvoznaniya, (7), 29-36.
19. AnX, MohandasN (2008). Disorders of red cell membrane. Br. J. Haematol., (141), 367-375.
20. GhailaniN, GuileminC, NigneronC (1995). Chronology of formation of vesicles and membrane pro-tein aggregates during erythrocyte aging. Nour. Rev. Fr. Hematol., 37(6), 313-319