DIAGNOSTIC CRITERIA FOR THE FORMATION OF GLAUCOMATOUS OPTIC NEUROPATHY AT THE VARIOUS STAGES OF THE DISEASE
Abstract and keywords
Abstract (English):
Purpose: to identify the most informative diagnostic criteria for the formation of glaucomatous optic neuropathy at various stages of the pathological process. Methods: 94people with early stages of glaucoma were examined using spectral optical tomography, chromatic meth-ods of perimetry, electroretinography and electrophysiological examination. The following main criteria for inclusion of patients in the study were identified: elevated levels of intraocular pressure (IOP), visual acuity not less than 0.6, similar in dimensions to the value of the optic nerve, which allowed comparing the results of research in these patients populations. Thus, through careful clinical analysis of data and assessment of excavation size of the optic nerve, using certain optical coherence tomography (OCT), all patients were divided into 3groups. To get an accurate representation of the formation features of glaucomatous neuropathy it was necessary to evaluate not only the structural changes of the retina and optic nerve, but also the changes of their functional activity in all groups. Results: The most important criterion for the structural changes of the retina in patients in the latent stage of the pathological process was the global indicator of the volume loss of ganglionic complex (GLV%). IOP decrease in this group of patients was accompanied by normalization criteria of central perimetry, PERG, which is indicating their functional transient depression on the background of elevated intraocular pressure. Decrease perimeter indices of all kinds of computer perimetry were observed in patients with more advanced stage of disease.

Keywords:
latent stage of glaucoma, complex of ganglion cells, OCT diagnostics of glaucoma
References

1. VolkovaNV, ShchukoAG, YurevaTN, MalyshevVV(2006). Risk factors of inadequate formation of the outflow pathways after penetrating deep sclerectomy [Faktory riska neadekvatnogo formirovaniya putey ottoka posle nepronikayushchey glubokoy sklerektomii]. Sibirskiy meditsinskiy zhurnal (Irkutsk), 7(65), 17-19.

2. EgorovEA, KuroedovAV (2012). Some clinical and epidemiological characteristics of glaucoma in the CIS and Georgia. Results of the multicenter open retro-spective study [Otdel’nye kliniko-epidemiologicheskie kharakteristiki glaukomy v stranakh SNG i Gruzii. Rezul’taty mnogotsentrovogo otkrytogo retrospektivnogo issledovaniya]. Klinicheskaya oftal’mologiya, (1), 21.

3. GrischukAS, YurevaTN, MikovaOI, MishchenkoTS (2012). Epidemiological aspects in the study of primary glaucoma [Epidemiologicheskie aspekty v izuchenii pervichnoy glaukomy]. Sibirskiy meditsinskiy zhurnal, (6), 23-26.

4. KuryshevaNI (2006). Glaucomatous optic neuropathy [Glaukomnaya opticheskaya neyropatiya], 172.

5. Nesterov А.P. (2000). Primary open-angle glaucoma, pathogenesis and principles of treatment [Pervichnaya otkrytougol’naya glaukoma, patogenez i printsipy lecheniya]. Klinicheskaya oftal’mologiya, (1), 4-5.

6. StrakhovVV, АlekseevVV, ErmakovaАV (2009).Informative bioretinometric indices of the optic nerve and the retina in the early diagnosis of primary glaucoma [Informativnost’ bioretinometricheskikh pokazateley diska zritel’nogo nerva i setchatki v ranney diagnostike pervichnoy glaukomy]. Glaukoma, (3), 3-10

7. YurevaTN, VolkovaNV, ShchukoAG, MalyshevVV(2007). Algorithm rehabilitation measures at the stages of formation of the outflow tract after pen-etrating deep sclerectomy [Algoritm reabilitatsionnykh meropriyatiy na etapakh formirovaniya putey ottoka posle nepronikayushchey glubokoy sklerektomii]. Oftal’mokhirurgiya, (4), 67-71

8. YurevaTN, PyatovaYS, KhudonogovAA, ShchukoAG (2014). Regularities of glaucomatous optic neuropathy formation from latent to the advanced stage of the disease [Zakonomernosti formirovaniya glaukomnoy opticheskoy neyropatii ot latentnoy do razvitoy stadii zabolevaniya]. Sibirskiy nauchnyy meditsinskiy zhurnal, 3(34), 108-112.

9. BaggaH, GreenfieldDS, KnightonRW (2005). Macular symmetry testing for glaucoma detection. J.Glaucoma, (14), 358-363

10. HoodDC, RazaAS, de MoraesCGV, OdelJG, GreensteinVC, LiebmannJM, RitchR (2011). Initial arcuate defects within the central 10 degrees in glaucoma. Investigative Ophthalmology & Visual Science, 52(2), 940-994.

11. KimNR, LeeES, SeongGJ, KangSY, KimJH,HongS, KimCY (2010). Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest. Ophthalmol. Vis. Sci., (51), 4646-4651

12. LedererDE, SchumanJS, HertzmarkE, HeltzerJ, VelazquesLJ, FujimotoJG, MattoxC (2003). Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am. J. Ophthalmol., (135), 838-843

13. LuAT, WangM, VarmaR, SchumanJS, GreenfieldDS, SmithSD, HuangD, Advanced Imaging for Glaucoma Study Group (2008). Combining nerve fiber layer parameters to optimize glaucoma diagnosis with optical coherence tomography. Ophthalmology, (115), 1352-1357.

14. MoriS, HangaiM, NakanishiH (2008). Macular inner and total retinal volume measurement by spectral domain optical coherence tomography for glaucoma diagnosis, 30.

15. SommerA, KatzJ, QuigleyHA, MillerNR, RobinAL, RichterRC, WittKA (1991). Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch. Ophthalmol., (109), 77-83.

16. TanO, LiG, LuAT, VarmaR, HuangD, Advanced Imaging for Glaucoma Study Group (2008). Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology, (115), 949-956.

17. TanO, ChopraV, LuAT, SchumanJS, IshikawaH, WollsteinG, VarmaR, HuangD (2009). Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology, 116(12), 2305-2314

18. WeberAJ, KaufmanPL, HubbardWC (1998). Morphology of single ganglion cells in the glaucomatous primate retina. Investigative Ophthalmology & Visual Science, 39(12), 2304-2320.

19. ZeimerR, ShahidiM, MoriM, ZouS, AsraniS (1996). A new method for rapid mapping of the retinal thickness at the posterior pole. Invest. Ophthalmol. Vis Sci., (37), 1994-2001

Login or Create
* Forgot password?