The article is devoted to the study of the peculiarities of real numbers in the discipline "Algebra and analysis" in the secondary school. The theme of "Real numbers" is not easy to understand and often causes difficulties for students. However, the study of this topic is now being given enough attention and time. The consequence is a lack of understanding of students and school-leavers, what constitutes the real numbers, irrational numbers. At the same time the notion of a real number is required for further successful study of mathematics. To improve the efficiency of studying the topic and form a clear idea about the different numbers offered to add significantly to the material of modern textbooks, increase the number of hours in the study of real numbers, as well as to include in the school course of algebra topics "Complex numbers" and "Algebraic structures".
algebra and analysis, real numbers, irrational numbers,secondary education, didactics.
I. Введение
В настоящее время программы изучения математики в общеобразовательных школах по учебникам, рекомендованным Министерством образования и науки Российской Федерации, предполагают последовательное изучение школьниками натуральных чисел, дробей, целых чисел, рациональных чисел, иррациональных чисел и действительных чисел. Процесс изучения чисел начинается в 1-м классе начальной школы знакомством с натуральными числами, которые используются для счета предметов, далее на наглядных примерах вводятся дроби, целые числа, рациональные числа.
1. Alimov Sh.A. Algebra i nachala analiza. 10-11 klassy: ucheb. dlya obshcheobrazovat. uchrezhdeniy: bazovyy uroven´ [The algebra and analysis. 10-11: Proc. for general education. Institutions: baseline]. Moscow, Prosveshchenie Publ., 2012. 384 p.
2. Arsent´eva I.V. Integratsiya nauki i obrazovaniya v protsesse izucheniya algebraicheskikh struktur shkol´nogo kursa matematiki [Integration of science and education in the study of algebraic structures school mathematics]. Integratsiya obrazovaniya [Integration of education]. 2007, I. 1.
3. Bashmakov M.I. Algebra i nachala analiza. 10-11 klassy: ucheb. dlya obshcheobrazovat. ucheb. Zavedeniy [Algebra and analysis. 10-11: Proc. for general education. Proc. institutions]. Moscow, Drofa Publ., 2001. 400 p.
4. Vilenkin N.Ya., Ivashev-Musatov O.S., Shvartsburd S.I. Algebra i matematicheskiy analiz dlya 11-go klassa [Algebra and mathematical analysis for 11 Class]. Moscow, Prosveshchenie Publ., 1998. 288 p.
5. Emelin A.V. Samopodobnye vizual´nye modeli kak effektivnoe sredstvo izucheniya irratsional´nykh chisel v shkol´nom kurse algebry [Self-similar visual model as an effective means of studying the irrational numbers in a school course of algebra]. Sovremennye problemy nauki i obrazovaniya [Modern problems of science and education]. 2012, I. 3.
6. Imaykin V.M. Iz opyta izucheniya elementov teorii grupp v neprofil´nykh starshikh klassakh sredney shkoly [From the experience of studying the elements of group theory in non-high school]. Matematicheskoe obrazovanie [Mathematical Education]. 2009, I. 3, pp. 17-26.
7. Kiselev A.P. Algebra [Algebra]. Moscow, FIZMATLIT Publ., 2005.
8. Kolmogorov A.N. Algebra i nachala analiza: ucheb. dlya 10-11 kl. obshcheobrazovat. uchrezhdeniy [The algebra and analysis: Textbook. For 10-11. general education. institutions]. Moscow, Prosveshchenie Publ., 2008. 384 p.
9. Kochetkov E.S., Kochetkova E.S. Algebra i elementarnye funktsii: ucheb. posobie dlya uchashchikhsya 10-go klassa sredney shkoly [Algebra and elementary functions: Proc. A manual for students of 10 secondary school]. Moscow, Prosveshchenie Publ., 1968.
10. Likhacheva M.V., Alekseenko A.S. O soderzhanii matematicheskikh distsiplin obrazovatel´nykh programm srednego i vysshego obrazovaniya [About the contents of mathematical disciplines of educational programs of secondary and higher education]. Sbornik trudov mezhdunarodnoy konferencii «Prikladnye issledovaniya i tekhnologii ART-2016» [Proceedings of the international conference "Applied research and ART2016 technology"]. MTI Publ., pp. 171-172.
11. Malova I.E. Teoriya i metodika obucheniya matematike v sredney shkole [Theory and methods of teaching mathematics in high school]. Moscow, VLADOS Publ., 2009. 445 p.
12. Metodika izucheniya kompleksnykh chisel v obshcheobrazovatel´noy shkole [Methods of study of complex numbers in secondary school]. PEDAGOGYFLOW.RU [PEDAGOGYFLOW. RU]. Available at: http://www.pedagogyflow.ru/flowen-682. html%2023/ (accessed 06 January 2017).
13. Mordkovich A.G., Semenov P.V. Algebra i nachala matematicheskogo analiza [Algebra and beginning of mathematical analysis]. Moscow, Mnemozina Publ., 2009. 424 p.
14. Naralenkova I.I., Shivrinskaya E.V. Priroda chisel na urokakh geometrii [The nature of the numbers on the geometry lessons]. Nauka i sovremennost´ [Science and modernity]. 2014, I. 29.
15. Algebra i nachala matematicheskogo analiza. 11 klass [Algebra beginning of mathematical analysis. Grade 11]. Moscow, Prosveshchenie Publ., 2008-2009. 464 p.
16. Ofitsial´nyy informatsionnyy portal Edinogo gosudarstvennogo ekzamena [Official information portal of the Unified State Examination]. Available at: http://www.ege.edu.ru/ru/ (accessed 06 January 2017).
17. Pichurin L.F. Za stranitsami uchebnika algebry [For algebra textbook pages]. Moscow, Prosveshchenie Publ., 1990. 224 p.
18. Ul´yanova T.V. Metodicheskie aktsenty v prepodavanii temy «Deystvitel´nye chisla» na profil´nom urovne [Methodical emphasis in teaching the topic "Real numbers" at profile level]. Omskiy nauchnyy vestnik [Omsk Scientific Bulletin]. 2011, I. 4.
19. Fikhtengol´ts G.M. Irratsional´nye chisla v sredney shkole [Irrational numbers in high school]. Matematicheskoe prosveshchenie [Mathematical education]. Moscow, Gostekhizdat Publ., 1957, I. 2, pp. 133-148.
20. Chaplygin V.F. Zadachi v formirovanii ponyatiya deystvitel´nogo chisla [Problems in the formation of the concept of a real number]. Matematika v shkole [Mathematics at school]. 1997, I. 1, pp. 26-27.
21. Chaplygin V.F. Osnovnye ponyatiya analiza v shkol´nom kurse matematiki. Nekotorye metodicheskie podkhody [Basic concepts of analysis in a school course of mathematics. Some methodological approaches]. Yaroslavskiy pedagogicheskiy vestnik [Yaroslavl Pedagogical Gazette]. 2003, I. 1.
22. Fischbein E., Jehiam R., Cohen D. The concept of irrational numbers in high-school students and prospective teachers // Educational Studies in Mathematics. July 1995, vol. 29, i.1, pp. 29-44. Available at: www.dx.doi.org/ BF01273899.
23. Giannakoulias E., Sougioul A., Zachariades T. Students’ thinking about fundamental real numbers properties. In D. Pitta-Pantazi & G. Philippou (Eds.) // Proceedings of the 5th Conference of European Research in Mathematics Education (CERME5) Larnaca, Cyprus: ERME, 2007. pp. 1955-1964.
24. Zazkis R., Sirotic N. Making sense of irrational numbers: focusing on representation // Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 2004, vol. 4, pp. 497-504.