FEATURES OF BACKSCATTER IONOSPHERIC SOUNDING AS STUDIED WITH A CHIRP IONOSONDE
Abstract and keywords
Abstract (English):
We present the results of studies of backscatter ionospheric sounding (BS) on the basis of a multipurpose chirp ionosonde developed in ISTP SB RAS. We analyze BS experimental data obtained during different seasons from 2005 to 2009. The accumulated dataset allows us to investigate features of BS signal propagation in various heliogeophysical conditions. To analyze and interpret BS signals on ionograms, we use the results of modeling of characteristics for chirp signals in the backscatter and oblique ionospheric sounding under the waveguide approach. We have revealed the most characteristic types of ionograms and have established conditions of appearance of a given type depending on the time of day, season, sounding direction, and medium conditions. In winter, spring, and autumn, the prevailing types of ionograms are those with BS signals corresponding to the propagation mode through reflection from the F layer. Signals reflected by E or Es layers are recorded during summer periods. At the same time, frequencies of the received signals are sufficiently large, and sometimes there are no reflections from the F layer.

Keywords:
ionosphere, ionogram, radio wave propagation, backscatter ionospheric sounding
Text
Publication text (PDF): Read Download

ВВЕДЕНИЕ

Метод возвратно-наклонного зондирования (ВНЗ) вошел в практику исследования ионосферы наряду с вертикальным и наклонным зондированием, и имеется опыт по его применению для прогнозирования условий распространения радиоволн на линиях радиосвязи и в системах загоризонтной радиолокации. По мощности излучения можно выделить два крайних вида радиотехнических систем, работающих в режиме возвратно-наклонного зондирования. К первому виду относятся системы с излучаемой мощностью свыше 10 кВт, ко второму виду — системы с мощностью меньше 1 кВт. Качество получаемых ионограмм ВНЗ напрямую связано с мощностью излучения: чем выше излучаемая мощность, тем больше отношение сигнал/шум, что позволяет регистрировать с высоким разрешением рассеянные сигналы с больших дальностей, улучшает качество обработки и интерпретации ионограмм. Однако большая передаваемая мощность увеличивает затраты на поддержку работы системы. Кроме того, возникает проблема электромагнитной совместимости зондирующей системы в целом. Для решения проблемы повышения энергетического потенциала станций при ограничении на излучаемую мощность и для обеспечения высокого разрешения по времени в радиолокации широко используются сигналы с линейной частотной модуляцией (ЛЧМ) [Варакин, 1970; Кук, Бернфельд, 1971; Sinnott, 1988; Wise, 2004; Earl, Ward, 1987]. В ионосферных исследованиях ЛЧМ-сигналы нашли применение при создании ионозондов, работающих в режимах вертикального, наклонного и возвратно-наклонного зондирования [Brynko et al., 1988; Иванов и др., 2003; Подлесный и др., 2013]. Современные ЛЧМ-ионозонды наклонного зондирования позволяют регистрировать сигналы на протяженных трассах, включая кругосветные [Ivanov et al., 1997; Куркин, 2000; Иванов и др., 2003]. Разработан новый инструмент — ЛЧМ-ионо-зонд-радиопеленгатор, который одновременно измеряет ключевые характеристики ионосферного канала (дистанционно-частотные, амплитудно-частотные и угловые частотные характеристики) во всем диапазоне частот прохождения КВ-радиосигналов. На базе данного инструмента проведены экспериментальные исследования распространения радиоволн на трассах с различной протяженностью и направлением в естественной и искусственно возмущенной ионосфере. Продемонстрированы возможности использования ионозонда-радиопеленгатора для загоризонтной коротковолновой радиолокации ионосферы Земли в планетарном масштабе [Валов и др., 2012; Вертоградов и др., 2013; Урядов и др., 2013]. В режиме возвратно-наклонного зондирования ЛЧМ-ионозонд позволяет регистрировать сигналы, рассеянные земной поверхностью на больших удалениях от излучателя, при относительно малых мощностях передатчика путем использования технологии сжатия сигнала по частоте [Филипп и др., 1991; Ilyin et al., 1996; Иванов и др., 2003]. Многолетний опыт экспериментальных исследований возвратно-наклонного зондирования ионосферы на базе ЛЧМ-ионозонда, разработанного в ИСЗФ СО РАН, выявил потенциальные возможности таких систем для диагностики среды распространения в пределах максимальной дальности одного скачка (~3000–4000 км). [Алтынцева и др., 1990; Ponomarchuk et al., 2009]. В данной работе приведены результаты исследования особенностей возвратно-наклонного зондирования ионосферы в Северо-Восточном регионе России по экспериментальным данным, полученным в различных гелиогеофизических условиях в 2005–2009 гг. Для интерпретации сигналов ВНЗ на ионограммах привлекались результаты моделирования характеристик ЛЧМ-сигналов при возвратно-наклонном зондировании ионосферы в рамках волноводного подхода с использованием модели IRI [Ponomarchuk et al., 2009; Bilitza, Reinisch, 2008; Пономарчук и др., 2014].

References

1. Altyntseva V.I., Brynko I.G., Galkin I.A., et al. Oblique back scatter sounding of the ionosphere by a linear-frequency modulation signal. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy, and Solar Physics]. Moscow, Nauka Publ., 1990, iss. 92, pp. 106-116. (In Russian).

2. Bilitza D., Reinisch B.W. International Reference Ionosphere 2007: improvements and new parameters. Adv. Space Res. 2008, vol. 42, pp. 599-609.

3. Brynko I.G., Galkin I.A., Grosov V.P., et al. An automatically controlled data gathering and processing system using an FMCW ionosonde. Adv. Space Res. 1988, vol. 8, no. 4, pp. 121-124.

4. Chernov Yu.A. Vozvratno-naklonnoe zondirovanie ionosfery [Backscatter Sounding Ionosphere]. Moscow, Svyaz’ Publ., 1971, 204 p. (In Russian).

5. Kuk Ch., Bernfel’d M. Radiolokatsionnye signaly. Teoriya i primenenie [Radar Signals: Theory and Application]. Moscow, Sovetskoe radio Publ., 1971, 567 p. (In Russian). English edition: Cook C., Bernfeld M. Radar Signals: An Introduction to Theory and Application. Academic press, 1967, 567 p.

6. Dyson P.L. A simple method of backscatter ionogram analysis. J. Atmos. Terr. Phys. 1991, vol. 53, no. 1. pp. 75-88.

7. Earl G.F., Ward B.D. The frequency management system of the Jindalee over-the-horizon backscatter HF radar. Radio sci. 1987, vol. 22, no. 2, pp. 275-291.

8. Filipp N.D., Blaunstein N.Sh., Eruhimov L.M., Ivanov V.A., Uryadov V.P. Sovremennye metody issledovaniya dinami-cheskikh protsessov v ionosfere. [Modern Methods of Investigation of Dynamic Processes in the Ionosphere]. Kishinev, Shtiintsa Publ., 1991, 288 p. (In Russian).

9. Grozov V.P., Ilyin N.V., Kotovich G.V., Ponomarchuk S.N. Software system for automatic interpretation of ionosphere sounding data. Pattern Recognition and Image Analysis. 2012, vol. 22, no. 3, pp. 458-463.

10. Grozov V.P., Kiselev A.M., Kotovich G.V., Mikhailov S.Ya., Ponomarchuk S.N. Software for processing and interpretation of ionograms obtained by digital chirp ionosonde. Geliogeofizicheskie issledovaniya [Heliogeophysical Research]. 2013, vol. 4, pp. 75-85. (In Russian).

11. Ilyin N.V., Khakhinov V.V., Kurkin V.I., Nosov V.E., Orlov I.I., Ponomarchuk S.N. The theory of chirp-signal ionospheric sounding. Proc. ISAP’96. Chiba, Japan, 1996, pp. 689-692.

12. Ivanov V. A., Ryabova N.V., Shumaev V.V., Uryadov V.P. Forecasting and updating HF channel parameters on the basis of oblique chirp sounding. Radio Sci. 1997, vol. 32, no. 3, pp. 983-988.

13. Ivanov V.A., Kurkin V.I., Nosov V.E., Uryadov V.P., Shumaev V.V. FMCW-ionosounder and its application in ionosphere research. Izvestiya vuzov. Radiofizika. [Radiophysics and Quantum Electronics]. 2003, vol. 46, no. 11, pp. 919-952. (In Russian).

14. Kabanov N.I., Osetrov B.I. Vozvratno-naklonnoe zondirovanie ionosfery [Backscatter Sounding Ionosphere]. Moscow, Svyaz’ Publ., 1965, 112 p. (In Russian).

15. Kurkin V.I., Nosov V.E., Ponomarchuk S.N., Savkov S.S., Chistyakova L.V. Metod of real-time diagnostics of HF radio channel. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy, and Solar Physics]. Novosibirsk, 1993, iss. 100, pp. 168-188. (In Russian).

16. Kurkin V.I., Nosov V.E., Matyushonok S.M. The features of round-the-world signal propagation over the paths of the russian chirp-sounder network during low and mild solar activity. Izvestiya vuzov. Radiofizika. [Radiophysics and Quantum Electronics]. 2000, vol. 43, no.10, pp.755-765. (In Russian).

17. Podlesnyi A.V., Brynko I.G., Kurkin V.I., Berezovsky V.A., Kiselyov A.M., Petukhov E.V. Multifunctional chirp ionosonde for monitoring the ionosphere. Geliogeofizicheskie issledovaniya [Heliogeophysical Research]. 2013, no. 4, pp. 24-31. (In Russian).

18. Ponomarchuk S.N, Kurkin V.I., Oinats A.V. The diagnostics of ionosphere and earth ground surface by backscatter sounding data. PIERS 2009 Moscow Proc. 2009, pp. 1307-1310.

19. Ponomarchuk S.N., Ilyin N.V., Penzin M.S. The model of radio wave propagation in 1-10 MHz frequency range on the base of normal wave technique. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2014, iss. 25, pp. 33-39. (In Russian).

20. Ponomarchuk S.N., Grozov V.P., Kotovich G.V., Kurkin V.I., Penzin M.S. Automatic processing and interpretation of backscatter ionosphere sounding ionograms. Proc. SPIE. 2016, vol. 10035, 100351E. DOI:https://doi.org/10.1117/12.2248765.

21. Sinnott D.H. The Development of Over-the-Horizon Radar in Australia. Defence Science & Technology Organisation Publ., 1988, 39 p.

22. Uryadov V.P., Vertogradov G.G., Vertogradova E.G. Spread-F radar observations in the midlatitude ionosphere using an ionosonde-radiodirection finder. Izvestiya vuzov. Radiofizika [Radiophysics and Quantum Electronics]. 2013, vol. 56, no. 1, pp. 1-11. (In Russian).

23. Valov V.A., Vertogradov G.G., Vertogradov V.G., et al. LFM ionosonde-radiodirection finder and its application in the Ionospheric Researches. Fizicheskie osnovy priborostroeniya [Physical Bases of Instrumentation]. 2012, vol. 1, no. 4(5), pp. 24-43. (In Russian).

24. Varakin L.E. Teoriya slozhnykh signalov [Theory of Complex Signals]. Moscow, Sovetskoe Radio Publ., 1970, 376 p. (In Russian).

25. Vertogradov G.G., Uryadov V.P., Vertogradov V.G., et al. Chirp ionosonde-radiodirection finder as a new tool for Studying the Ionosphere and radio-wave propagation. Izvestiya vuzov. Radiofizika. [Radiophysics and Quantum Electronics]. 2013, vol. 56, no. 5, pp. 259-275. (In Russian).

26. Wise J.C. Summary of recent Australian radar developments. IEEE Aerospace and Electronic Systems Magazine. December 2004, pp. 8-10.

Login or Create
* Forgot password?