Abstract and keywords
Abstract (English):
Cel': Pokazat' vozmozhnost' organizacii neytronnoy terapii na puchke fotoneytronov iz misheni moschnogo uskoritelya elektronov pri obespechenii trebuemoy dozy v opuholi za priemlemoe vremya ekspozicii i pri minimal'nom obluchenii normal'nyh tkaney organizma pacienta. Material i metody: Generaciya neytronov iz misheni uskoritelya elektronov proishodit dvuhstupenchato: e-  γ  n, prichem v vybrannom diapazone energii elektronov 20–100 MeV vyhod tormoznogo izlucheniya mnogokratno (na ~3 poryadka) prevyshaet «poleznyy» vyhod neytronov. Otsyuda voznikaet problema izbiratel'nogo podavleniya «vrednogo» dlya luchevoy terapii fotonnogo izlucheniya pri minimal'nom oslablenii potoka neytronov v vyvodimom puchke. Dlya resheniya obschey zadachi formirovaniya puchka neytronov neobhodimogo spektral'nogo sostava i dostatochnoy intensivnosti reshen ryad raschetnyh zadach podbora optimal'noy konfiguracii i sostava bloka vyvoda puchka. Osoboe vnimanie udeleno minimizacii dopolnitel'nogo oblucheniya pacienta tormoznym (generaciya elektronami) i vtorichnym (generaciya neytronami) gamma-izlucheniem misheni i materialov bloka vyvoda. Rezul'taty: Poluchennaya konfiguraciya bloka vyvoda obespechivaet trebuemoe kachestvo puchka primenitel'no k zadacham neytronozahvatnoy terapii (NZT), kotoraya yavlyaetsya edinstvennoy konkurentosposobnoy tehnologiey neytronnoy terapii na fone massovogo primeneniya protonnoy terapii i dr. metodik, izbiratel'no porazhayuschih mishen' pri minimal'noy luchevoy nagruzke na okruzhayuschie organy i tkani. Pri harakteristikah kommercheski dostupnyh uskoriteley (sredniy tok 4 mA, energiya elektronov 35 MeV) plotnost' potoka epiteplovyh fotoneytronov, trebuemyh dlya NZT, na vyhode puchka na poryadok i bolee prevyshaet velichiny, harakternye dlya suschestvuyuschih i proektiruemyh reaktornyh puchkov. Vyvody: Predlozhennaya shema generacii i vyvoda fotoneytronov dlya NZT imeet ryad nesomnennyh preimuschestv pered tradicionnymi podhodami: a) primenenie uskoriteley elektronov dlya polucheniya neytronov gorazdo bezopasnee i deshevle ispol'zovaniya tradicionnyh reaktornyh puchkov; b) uskoritel' s mishen'yu, blok vyvoda puchka s neobhodimymi ustroystvami i osnastkoy mozhet byt' bez osobyh problem razmeschen na territorii kliniki; c) primenyaemaya mishen' – zhidkiy galliy, kotoryy takzhe sluzhit i teplonositelem, yavlyaetsya ekologicheski chistym materialom: ego aktivaciya ves'ma neznachitel'na i bystro (za ~ 4 sut) spadaet do urovnya fona.

Keywords:
uskoritel' elektronov, vol'fram-gallievaya mishen', tormoznoe izluchenie, fotoneytrony, neytronozahvatnaya terapiya, optimizaciya harakteristik puchka
Text

Работа посвящена обсуждению возможности создания нейтронного источника высокой интенсивности на основе жидкого галлия в составе комбинированной мишени мощного ускорителя электронов средних энергий. Кроме того, рассмотрены направления оптимизации выхода нейтронов из мишени и формирования спектра, необходимого для задач нейтронозахватной терапии (НЗТ). Основные принципы использования фотоядерных нейтронов, получаемых на электронных ускорителях, для производства радиоизотопов и медицины изложены в литературном источнике.

References

1. Kurachenko Yu.A., Voznesensky N.K., Goverdovsky A.A., Rachkov V.I. Novyi intensivnyi istochnik nejtronov dlya medicinskih prilozhenij [New intensive neutron source for medical application] // Medicinskaya fizika. 2012. № 2 (38). P. 29-38. (in Russian).

2. Kurachenko Yu.A. Fotonejtrony dlya nejtronozahvatnoj terapii [Photoneutrons for neutron capture therapy] // Izvestiya vuzov. Yadernaya energetika. 2014. № 4. P. 41 - 51. (in Russian).

3. Zamenhof R.G., Murray B.W., Brownell G.L. et al. Boron neutron capture therapy for the treatment of cerebral gliomas. 1: Theoretical Evaluation of the Efficacy of Various Neutron Beams // Med. Phys. 1975. Vol. 2. P. 47-60.

4. Blue T.E., Yanch J.C. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors // J. Neurooncol. 2003. Vol. 62. P. 19-31.

5. Zhou Y., Gao Z., Li Y., Guo C., Liu X. Design and construction of the in-hospital neutron irradiator-1(HNI) // In Proc. 12th ICNCT - Advances in Neutron Capture Therapy. 2006. October 9-13. Takamatsu. Japan. Eds. Nakagawa Y., Kobayashi T., Fukuda H. 2006. P. 557-560.

6. Nigg D.W. Neutron sources and applications in radiotherapy - A brief history and current trends // In: Advances in Neutron Capture Therapy 2006. Proc. 12th Intl. Cong Neutron Capture Therapy. Oct 9-13. Eds. Nakagawa Y., Kobayashi T., Fukuda H. Takamatsu. Japan. 2006. P. 623-626.

7. Kurachenko Yu.A. Optimizatciya bloka vyvoda reaktornogo puchka dlya luchevoj therapii [The reactor beam’s removal block optimization for radiation therapy] // Izvestiya vuzov. Yadernaya energetika. 2008. № 1. P. 129-138. (in Russian).

8. Tanaka H., Sakurai Y., Suzuki M. et al. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS) // Appl. Radiat. Isot. 2011. Vol. 69. P. 1642-1645.

9. The Basics of Boron Neutron Capture Therapy. Available address: http://web.mit.edu/nrl/www/bnct/facilities/facilities.html

10. MIT BNCT Facilities. Fission Converter Beam (FCB). Available address: http://web.mit.edu/nrl/www/bnct/facilities/MIT BNCT Facilities.htm

11. Reattore TAPIRO: ENEA Internal Document, DISP/TAP/85-1, 1985 // In: Design of neutron beams for boron neutron capture therapy in a fast reactor. Current status of neutron capture therapy. IAEA-TECDOC-1223, 2001.

12. Rosi G. et al. Role of the TAPIRO fast research reactor in neutron capture therapy in Italy. Calculations and measurements. IAEA-CN-100/97. // In: Research Reactor Utilization, Safety, Decommissioning, Fuel and Waste Management Proc. Internat. Conf. 10-14 November 2003 Santiago, Chile. P. 325-338.

13. Carta M., Palomba M. TRIGA RC-1 and TAPIRO ENEA Research Reactors. Доступно по адресу: https://www.iaea.org/OurWork/ST/NE/NEFW/Technical-Areas/RRS/documents/ TM_Innovation/Carta_ENEA.pdf.

14. General information and technical data of TAPIRO research reactor. Доступно по адресу: http://www.enea.it/en/research-development/documents/nuclear-fission/tapiro-eng-pdf.

15. Nuclear Research Reactor: TAPIRO. Доступно по адресу: http://old.enea.it/com/ingl/ New_ingl/research/energy/nucleare_fission/pdf/TAPIRO-ENG.pdf.

16. Kurachenko Yu.A., Kazanskij Yu.A., Levchenko A.B., Matusevich Eu.S. Vyvod nejtronnyh puchkov i zaschita meditcinskogo reaktora MARS [Neutron beam’s removing and protection for the medical MARS reactor] // Izvestiya vuzov. Yadernaya energetika. 2006. № 4. P. 36-48. (in Russian).

17. Kurachenko Yu.A., Moiseenko D.N. MARS i TAPIRO: reaktory maloj moschnosti dlya nejtrono-zahvatnoj terapii [MARS & TAPIRO: small-capacity reactors for neutron capture therapy] // Izvestiya vuzov. Yadernaya energetika. 2010. № 1. P. 153-163. (in Russian).

18. Kurachenko Yu.A., Kazanskij Yu.A., Matusevich Eu.S. Kriterii kachestva nejtronnyh puchkov dlya luchevoj terapii [Neutron beams’ quality criteria for radiation therapy] // Izvestiya vuzov. Yadernaya energetika. 2008. № 1. P. 139-149. (in Russian).

19. Kurachenko Yu.A. Reaktornye puchki dlya luchevoj terapii: kriterii kachestva i raschyotnye tekhnologii [Reactor beams for the radiation therapy: quality criteria and computation technologies] // Medicinskaya fizika. 2008. № 2 (38). P. 20-28. (in Russian).

20. Kurachenko Yu. A. Reaktornye puchki dlya luchevoj terapii. Raschyotnye modeli i vychislitel’nye tekhnologii [Reactor beams for radiation therapy. Calculation models and computation technologies]. - Saarbrücken, Deutschland: Palmarium Academic Publishing, OmniScriptum GmbH&Co. RG, (ISBN: 978-3-8473-9842-4) 2013. 372 p. (in Russian).

21. Burn K.W. et al. Final design and construction issues of the TAPIRO epithermal column, Report at ICNCT-XII, Oct. 9-13, 2006. http://icnct-12.umin.jp/beams for boron neutron capture therapy in a fast reactor/Current status of neutron capture therapy. IAEA-TECDOC-1223, 2001.

22. Liu Hungyuan B., Brugger R.M., Rorer D.C. Upgrades of the epithermal neutron beam at the Brookhaven Medical Research Reactor BNL-63411. Доступно по адресу: http://www.iaea.org/inis/collection/NCLCollectionStore/ _Public/28/014/28014354.pdf

23. Riley K.J., Binns P.J., Harling O.K. Performance characteristics of the MIT fission converter based epithermal neutron beam // Phys. Med. Biol. 2003. Vol. 48. P. 943-958,

24. Harling O.K., Riley K.J., Newton T.H. et al. The new fission converter based epithermal neutron irradiation facility at MIT // Nuclear Reactor Laboratory. MIT. Доступно по адресу: http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/36/026/36026570.pdf

25. MCNP - A General Monte Carlo N-Particle Transport Code. Version 5. Vol. I: Overview and Theory. Authors: X-5 Monte Carlo Team. LA-UR-03-1987. April 24. 2003.

26. Pelowitz D.B. MCNPX user’s manual. Version 2.4.0 - LA-CP-07-1473.

27. STAR-CD®. Доступно по адресу CD-adapco Engineering Simulation Software - CAE and CFD Software.

Login or Create
* Forgot password?