Omsk, Omsk, Russian Federation
Omsk, Omsk, Russian Federation
Omsk, Omsk, Russian Federation
The paper presents the results of investigations in the field of kinematic geometry of the spatial curve of a line. The basis of the research is the method of the movable trihedron of the curve. The components of the trihedron motion along the spatial curve are considered and it is shown that its resultant instantaneous motion is screw motion. This result differs from the representation of the motion of a trihedron known in geometry as a rotation described by the Darboux vector. An analytical description of the set of axes of instantaneous helical motions of a trihedron in a moving and fixed system of assigning a spatial curve is given. The possibility of applying the obtained general results to the investigation of a plane curve is shown. The paper proposes a flat tooth gearing model based on the geometric interpretation of the motions of a trihedron of a plane curve and known in the geometric theory of plane mechanisms of the construction of Bobillier. The geometric scheme of this construction is expanded due to the introduction of evolutes simulating instantaneous motions of trihedron of the corresponding construction curves. As a result, a geometric model is obtained, which is more complete in comparison with the known models of flat gearing. It allows to perform both direct and inverse tasks of profiling the teeth of the wheels while simultaneously obtaining the curvature of the desired profiles in the absence of such. The proposed model can be used as the basis for the development of gears with a planar gearing scheme by the condition of achieving the necessary transmission performance due to the geometric shape of the teeth of the wheels.
krivaya liniya, trehgrannik, kinematicheskaya geometriya, geometricheskaya model', ploskoe zubchatoe zaceplenie.
В геометрии и ее приложениях применяются кинематические методы исследований плоской кривой, описываемой вершиной ее подвижного трехгранника, и результаты этих исследований применяются в задачах кинематической геометрии на плоскости [1; 2]. В направлении развития этих исследований и их теоретических и практических приложений в работе рассматриваются некоторые аспекты кинематики пространственной кривой и одно из ее приложений в области плоских зубчатых зацеплений.
1. Bubennikov A.V., Gromov M.Ya. Nachertatel'naya geometriya [Descriptive geometry]. Moscow, Vysshaya shkola Publ., 1973. 416 p. (in Russian).
2. Geronimus YA.L. Geometricheskij apparat teorii sinteza ploskih mekhanizmov [Geometric apparatus of the theory of the synthesis of planar mechanisms]. M.: Gos. izd-vo fiz.-mat. liter. Publ., 1962. 400 p. (in Russian)
3. Dimentberg F.M. Teoriya vintov i eyo prilozheniya [The theory of screws and its applications]. Moscow, Nauka Publ., 1978. 328 p. (in Russian)
4. Erckina E.B., Korol'kova N.N. Geometricheskoe modelirovanie v avtomatizirovannom proektirovanii arhitekturnyh ob"ektov [Geometric modeling in the automated design of architectural objects]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 2, pp. 48-54. (in Russian). DOI: 10.12737 / 19833.
5. Kartan EH. Teoriya konechnyh nepreryvnyh grupp i differencial'naya geometriya, izlozhennye metodom podvizhnogo repera [The theory of finite continuous groups and differential geometry, described by the moving frame method]. Volgograd, “Platon” Publ., 1998. 368 p. (in Russian)
6. Korchagin D.S., Panchuk K.L. Vosstanovlenie krivoj po ee ortogonal'nym proekciyam [Reconstruction of a curve by its orthogonal projections]. Sovremennoe sostoyanie, razvitie inzhenernoj geometrii i komp'yuternoj grafiki v usloviyah informacionnyh i komp'yuternyh tekhnologij: sb. tr. mezhdunar. nauch.-metod. konf. [Current state, development of engineering geometry and computer graphics in the conditions of information and computer technologies. The collection of works of the international scientific and methodical conference]. Almaty, 2011, pp. 71-80. (in Russian)
7. Kulikov L.K. Ob odnom metode konstruirovaniya sopryazhyonnyh poverhnostej [On a method of constructing conjugate surfaces]. Avtomatizaciya proektirovaniya i matematicheskoe modelirovanie krivolinejnyh poverhnostej na baze EVM [Automation of design and mathematical modeling of curvilinear surfaces on the basis of a computer]. Novosibirsk, 1977, pp. 70-73. (in Russian)
8. Lenskij M.F. Sintez ploskih mekhanizmov s kinematicheskimi parami tochechnogo kasaniya po nekotorym kachestvennym pokazatelyam [Synthesis of plane mechanisms with kinematic pairs of point contact by some qualitative indicators]. Mashinovedenie [Machine science]. 1969, I. 3, pp. 20-24. (in Russian)
9. Lojcyanskij L.G., Lur'e A.I. Kurs teoreticheskoj mekhaniki [Course of theoretical mechanics]. Statika i kinematika [Statics and kinematics]. Moscow, Nauka Publ, 1982. 352 p. (in Russian)
10. Nitejskij A.S. Konstruirovanie torsovoj poverhnosti metodom podvizhnogo trekhgrannika Frene [Construction of a torso surface by the method of a movable triaxial Frenet]. Omskij nauchnyj vestnik [Omsk Scientific Herald]. 2013, I. 2 (120), pp. 151-153. (in Russian)
11. Osipov V.A. Mashinnye metody proektirovaniya nepreryvno- karkasnyh poverhnostej [Machine methods for designing continuous-frame surfaces]. Moscow, Mashinostroenie Publ., 1979. 248 p. (in Russian)
12. Panchuk K.L. Geometricheskij sintez ploskogo zubchatogo zacepleniya [Geometrical synthesis of flat gearing]. Izvestiya vuzov. Mashinostroenie [Proceedings of universities. Mechanical Engineering]. 1982, I. 6, pp. 35-39. (in Russian)
13. Panchuk K.L., Nitejskij A.S. Differencial'no-geometricheskij metod obrazovaniya linejchatyh razvertyvayushchihsya poverhnostej [Differential-geometric method for the formation of ruled discontinuous surfaces]. Vestnik KuzGTU [Bulletin of Kuzbass State Technical University]. 2014, I. 1, pp. 70-73. (in Russian)
14. Pilipaka S.F., Mukvich N.N. Konstruirovanie linejchatyh poverhnostej obshchego vida v sisteme soprovoditel'nogo trekhgrannika napravlyayushchej prostranstvennoj krivoj [Construction of ruled surfaces of general form in the system of the accompanying trihedron of the directional spatial curve]. Trudy Tavricheskoj gosudarstvennoj agrotekhnicheskoj akademii [Proceedings of the Taurian State Agrotechnical Academy]. Melitopol: TDATU Publ., 2007, I. 4. (in Russian)
15. Rachkovskaya G.S. Geometricheskoe modelirovanie i grafika kinematicheskih linejchatyh poverhnostej na osnove triady kontaktiruyushchih aksoidov [Geometric modeling and graph of kinematic ruled surfaces based on the triad of contacting axoids]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 3, pp. 46-52. DOI:https://doi.org/10.12737/21533 (in Russian)
16. Rashevskij P.K. Kurs differencial'noj geometrii [Course of differential geometry]. Moscow, Gos. izd-vo tekhn.-teor. liter., 1956. 420 p. (in Russian)
17. Sal'kov N.A. Geometricheskoe modelirovanie i nachertatel'naya geometriya [Geometric Modeling and Descriptive Geometry]. Geometriya i grafika [Geometry and Graph.]. 2016, V. 4, I. 4, pp. 31-40. (in Russian). DOI:https://doi.org/10.12737/22841.
18. Yakubovskij A.M. Nekotorye voprosy konstruirovaniya poverhnostej s pomoshch'yu trekhgrannika Frene [Some questions of the construction of surfaces with the help of the Frenet trihedron]. Trudy un-ta Druzhby Narodov im. P. Lumumby [Proceedings of the University of Friendship of the Peoples of Patrice Lumumba]. Moscow, 1967, V. 26, pp. 23-32. (in Russian)
19. Litvin F.L. Theory of Gearing. Wachington. DC: NACA, NACA Reference Publication 1212. AVSCOM Technical Report, 88-C-035, 1989. 490 p. (in English)
20. Litvin F.L., Fuentes A. Gear Geometry and Applied Theory [Gear Geometry and Applied Theory]. Second Edition, Cambridge University Press, Cambridge, 2004. 800 p. (in English)
21. Panchuk K.L., Niteysky A.S. Contact of the Ruled Nondevelopable Surfaces. Proceedings of the 16th International Conference on Geometry and Graphics. Conference Series. Innsbruck, Austria, August 4-8, 2014. Innsbruck University Press, 2014, pp. 216-223. (in English)
22. Panchuk K.L., Niteysky A.S. Mathematical Modeling of contacting ruled surfaces: theory and practical application. MEACS2015 IOP Publishing IOP Conf. Series: Materials Science and Engineering 124 (2016) 012083. DOI: 10.1088 / 1757-899X / 124/1/012083. (in English)