RECONSTRUCTION OF QUADRATIC CREMONA TRANSFORMATION
Abstract and keywords
Abstract (English):
The geometric correspondence between the points of two planes can be considered well defined only when base data for its establishing is available, and a construction method by which its possible on the basis of these data for each point in one plane to find the corresponding points in the other one. Quadratic Cremona transformation can be specified by pointing out in the combined plane seven pairs of corresponding points. Naturally there is a need to establish a method for constructing any number of corresponding points. An outstanding Russian geometer K.A. Andreev indicated the linear construction based on the consideration of two correlations by which for each eighth point in the one plane is found the corresponding point of the other one. But in his work was not set up a problem to construct excluded (fundamental) points of quadratic Cremona transformation specified by seven pairs of points. There are many constructive ways to obtain the quadratic transformation in the plane. For example, it can be obtained by using two pairs of projective pencils of straight lines with vertices at the fundamental points (F-points). K.A. Andreev noted that this method for establishing of quadratic correspondence spread only to those cases when all F-points are the real ones. This statement is true for the 19th century’s level of geometric science, but today it’s too categorical. The theory of imaginary elements in geometry allows to develop a universal algorithm for construction of corresponding points in a quadratic transformation, given both by real and imaginary F-points. Summarizing the K.A. Andreev task, we come to the problem of finding the fundamental points (F-points) for a quadratic transformation specified by seven pairs of corresponding points. Almost one and half century the K.A. Andreev generalized task remained unsolved. The formation of this task’s constructive solution algorithm and its practical implementation has become possible by means of modern computer geometric modeling. According to proposed algorithm, the construction of F-points is reduced to the construction of second order auxiliary curves, on which intersection are marked the required F-points. The result received in this paper is used for development of the Cremona transformations’ theory, and for further application of this theory in the practice of geometric modeling.

Keywords:
birational correspondence, pencils of lines, pencils of conics, central quadratic transformation, Hirst transformation.
Text

Введение. Геометрическое соответствие между точками двух плоскостей (различных или совмещенных) может считаться вполне определенным лишь тогда, когда имеются исходные данные, его устанавливающие, и указан способ построения, с помощью
которого на основании этих данных можно для каждой точки одной плоскости находить соответственные точки другой [1; 2; 13; 25; 26].

References

1. Andreev K.A. O geometricheskih sootvetstviyah v primenenii k voprosu o postroenii krivyh linij [Of Geometric Correspondences as Applied to the Question of the Construction of Curves]. Moscow, Izdanie Moskovskogo Matematicheskogo obshchestva, sostoyashchego pri Imperatorskom Moskovskom Universitete Publ., 1879. 168 p.

2. Kaygorodtseva N.A, Panchuk K.L, Volkov V.Y., Yurkov V.Y. Elementy matematizatsii teoreticheskikh osnov nachertatel'noy geometrii [Matematization Elements of Theoretical Fundamentals of Descriptive Geometry]. Geometriya i grafika [Geometry and graphics], 2015, V. 3, I. 1, pp. 3-15 (in Russian). DOI:https://doi.org/10.12737/10453.

3. Geronimus Ya.L. Geometricheskiy apparat teorii sinteza ploskih mehanizmov [Geometric theory of synthesis of flat mechanisms]. Moscow, Fizmatlit Publ., 1962. 399 p.

4. Girsh A.G. Mnimosti v geometrii [The Imaginaru in Geometry]. Geometriya i grafika [Geometry and graphics]. 2014, V. 2, I. 2, pp. 6-11. (in Russian). DOI:https://doi.org/10.12737/5583.

5. Girsh A.G. Fokusy algebraicheskikh krivykh [The Focal Points of Algebraic Curves]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 3, pp. 4-17. (in Russian). DOI:https://doi.org/10.12737/14415.

6. Glagolev N.A. Proektivnaja geometrija [Projective Geometry]. Moscow, Vysshaja shkola Publ., 1963. 343 p.

7. Golovanov N.N. Geometricheskoe modelirovanie [Geometrical Modeling]. Moscow, Publishing House of Physical and Mathematical Literature, 2012. 472 p.

8. Grafskiy O. Ob ustanovlenii vzaimnoy svyazi ryada i puchka vtorogo poryadka [On the Interconnection of a Range and the Second-Order Cluster]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 2, pp. 8-18. (in Russian). DOI:https://doi.org/10.12737/19828.

9. Efimov N.V. Vyisshaya geometriya [Higher Geometry]. Moscow, Fizmatlit Publ., 2003. 584 p.

10. Ivanov G.S. Konstruirovanie tekhnicheskikh poverkhnostey [Design of Technical Surfaces]. Moscow, Mashinostroenie Publ., 1987. 192 p.

11. Ivanov G.S. Konstruktivnyy sposob issledovaniya cvoystv parametricheski zadannykh krivykh [A Constructive Way to study the properties of parametrically defined Curves]. Geometriya i grafika [Geometry and graphics]. 2014, V. 2, I. 3, pp. 3-6. (in Russian). DOI:https://doi.org/10.12737/6518.

12. Dmitrieva I., Ivanov G. O zadachakh nachertatel'noy geometrii s mnimymi resheniyami [About the Tasks of Descriptive Geometry with imaginary Solutions]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 2, pp. 3-8. (in Russian). DOI:https://doi.org/10.12737/12163.

13. Dmitrieva I., Ivanov G. Printsip dvoystvennosti - teoreticheskaya baza vzaimosvyazi sinteticheskikh i analiticheskikh sposobov resheniya geometricheskikh zadach [The Duality Principle Is the Theoretical Basis of Interrelation of Synthetic and Analytical Methods of Solving Geometric Problems]. Geometriya i grafika. [Geometry and graphics]. 2016, V. 4, I. 3, pp. 3-10. (in Russian). DOI:https://doi.org/10.12737/21528.

14. Kleyn F. Vyisshaya geometriya [Higher Geometry]. Moscow, URSS Publ., 2004. 400 p.

15. Kleyn F. Elementarnaya matematika s tochki zreniya vyisshey [Elementary Mathematics from the Point of View of Higher]. Moscow, Nauka Publ., 1987, V. 2, 416 p.

16. Kokster H.S.M. Dejstvitel'naya proektivnaya ploskost' [The real projective Plane]. Moscow, Fizmatlit Publ., 1959. 280 p.

17. Korotkiy V.A. Sinteticheskie algoritmy postroeniya krivoy vtorogo poryadka [Synthetic algorithms of constructing a Curve of the Second Order]. Vestnik kompyuternyih i informatsionnyih tehnologiy [Herald of Computer and Information Technologies]. 2014, I. 11, pp. 20-24. (in Russian)

18. Korotkiy V.A. Kvadratichnoe preobrazovanie ploskosti, ustanovlennoe puchkom konicheskikh secheniy [Quadratic Transformation of the Plane specified by the beam of Conic Sections]. Omskij nauchnyj vestnik [Omsk Scientific Bulletin]. 2013, I. 1, pp. 9-14. (in Russian)

19. Korotkiy V.A., Hmarova L.I. [Universal Computer Conimgraph]. Trudy 26-j Mezhdunarodnoj nauchnoj konferencii GraphiCon 2016 [Proceedings of the 26th International Scientific Conference GraphiCon 2016]. Nizhnij Novgorod, NNGASU Publ., pp. 347-351.

20. Girsh A., Korotkiy V. Graficheskie algoritmy rekonstruktsii krivoy vtorogo poryadka, zadannoy mnimymi elementami [Graphic Reconstruction Algorithms of the Second-Order Curve, Given by the Imaginary Elements]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 19-30. (in Russian). DOI:https://doi.org/10.12737/22840.

21. Peklich V.A. Vyisshaya nachertatelnaya geometriya [Higher Descriptive Geometry]. Moscow, ASV Publ., 2000. 344 p.

22. Korotkiy V.A. Programma dlja JeVM “Postroenie krivoj vtorogo porjadka, prohodjashhej cherez dannye tochki i kasajushhejsja dannyh prjamyh” [Computer program "Construction of a curve of the second order passing through these points and relating to these lines"]. Svidetel'stvo o gosudarstvennoj registracii № 2011611961 ot 04.03.2011 g. [Certificate of state registration No. 2011611961 of 04.03.2011].

23. Sal′kov N. Nachertatel'naya geometriya - baza dlya geometrii analiticheskoy [Descriptive Geometry As the Basis for Analytical Geometry]. Geometriya i grafika [Geo-metry and graphics]. 2016, V. 4, I. 1, pp. 44-54. DOI:https://doi.org/10.12737/18057.

24. Sal′kov N. Geometricheskoe modelirovanie i nachertatel'naya geometriya [Geometric Simulation and Descriptive Geometry]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 31-40. (in Russian). DOI:https://doi.org/10.12737/22841.

25. Dmitrieva I.M., Ivanov G.S., Seregin V.I. Mezhdistsiplinarnye svyazi nachertatel'noy geometrii i smezhnykh razdelov vysshey matematiki [Interdisciplinary Team of Descriptive Geometry and Related Topics of Mathematics]. Geometriya i grafika [Geometry and graphics]. 2013, V. 1, I. 3/4, pp. 8-12. (in Russian). DOI:https://doi.org/10.12737/2124.

26. Borovikov I., Ivanov G., Senchenkova L., Seregin V. Geometricheskie preobrazovaniya v nachertatel'noy geometrii i inzhenernoy grafike [Geometric Transformations in Descriptive Geometry And Engineering Graphics]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 2, pp. 23- 28. (in Russian). DOI:https://doi.org/10.12737/12165.27.

27. Faux I.D., Pratt M. J. Vychislitel'naya geometriya [Computational Geometry]. Moscow, Mir Publ., 1982. 304 p.

28. Yurkov V. Formal'noe predstavlenie usloviy intsidentnosti v mnogomernykh proektivnykh prostranstvakh [Formal Representation of Incidence Conditions in Multidimensional Projective Spaces]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 3-13. (in Russian). DOI:https://doi.org/10.12737/22838.

29. YAglom I.M., Atanasyan L.S. Geometricheskie preobrazovaniya [Geometric transformations]. Enciklopediya elementarnoj matematiki [Encyclopedia of Elementary Mathematics]. Moscow, Gosudarstvennoe izdatel'stvo fiziko-matematicheskoj literatury Publ., 1963, V. 4, pp. 50-157.

Login or Create
* Forgot password?