Nizhniy Novgorod, Nizhny Novgorod, Russian Federation
UDK 53 Физика
UDK 55 Геология. Геологические и геофизические науки
This paper presents the calculations of synchrotron radio emission intensity from Van Allen belts with Gaussian space distribution of electron density across L-shells of a dipole magnetic field, and with Maxwell’s relativistic electron energy distribution. The results of these calculations come to a good agreement with measurements of the synchrotron emission intensity of the artificial radiation belt’s electrons during the Starfish nuclear test. We have obtained two-dimensional distributions of radio brightness in azimuth — zenith angle coordinates for an observer on Earth’s surface. The westside and eastside intensity maxima exceed several times the maximum level of emission in the meridian plane. We have also constructed two-dimensional distributions of the radio emission intensity in decibels related to the background galactic radio noise level. Isotropic fluxes of relativistic electrons (E ~ 1 MeV) should be more than 107 cm–2s–1 for the synchrotron emission intensity in the meridian plane to exceed the cosmic noise level by 0.1 dB (riometer sensitivity threshold).
synchrotron radio emission, relativistic electrons, radiation belt, dipole magnetic field
ВВЕДЕНИЕ
Открытие в 1958 г. радиационных поясов Земли стимулировало серию работ, посвященных расчетам характеристик синхротронного радиоизлучения элек-тронов, захваченных в дипольном магнитном поле [Dyce, Nakada, 1959; Корчак, 1963; Vesecky, Peter-son, 1967]. В 1962 г. в результате высотного ядерного взрыва в околоземном космическом пространстве (эксперимент “Starfish”) сформировался искусственный радиационный пояс (РП) из высокоэнергичных электронов [Van Allen et al., 1963; Hess, 1963]. С помощью специальных приемников — риометров [Little, Leinbach, 1958; Дриацкий 1974], расположенных на экваториальных станциях, было зарегистрировано синхротронное радиоизлучение этих электронов [Ochs et al., 1963; Dyce, Horowitz, 1963; Peterson, Hower, 1963]. Из-за сложности вычислений в общем виде характеристики синхротронного излучения РП рассчитывались для простых частных случаев: а) регистрации излучения расположенной на экваторе и направленной в зенит антенной [Dyce, Nakada, 1959; Peterson, Hower, 1963]; б) регистрации излучения из-за пределов магнитосферы с больших расстояний, т. е. как от радиоастрономического объекта [Корчак 1963; Vesecky, Peterson, 1967]. Эти расчеты показали, что при обычном состоянии земного РП интенсивность его синхротронного излучения существенно меньше фонового уровня космического шума. Вместе с тем, во время сильных магнитосферных возмущений на субавроральных станциях иногда регистрировался достаточно интенсивный естественный ионосферно-магнитосферный радиошум в диапазоне частот 20–200 МГц [Chivers, Wells, 1959; Egan, Peterson, 1960; Ellyett, 1969; Eriksen, Harang, 1969], морфологически сходный с синхротронным излучением искусственного РП. По-видимому, в особых экстремальных ситуациях, таких как ядерный взрыв в магнитосфере, и, вероятно, во время сильных магнитосферных возмущений синхротронное излучение релятивистских магнитосферных электронов может составлять заметную добавку к уровню космического фона и регистрироваться наземными приемниками в широком диапазоне частот.
Практическая возможность регистрации синхротронного излучения электронов естественного РП представляет интерес с точки зрения диагностики магнитосферы и исследования процессов ускорения электронов в околоземном пространстве. Интересна также возможность мониторинга экстремальных условий на орбитах ИСЗ, поскольку именно электроны релятивистских энергий создают основной радиационный фон для бортового оборудования («электроны-убийцы») [Романова и др., 2005; Potapov, 2017]. Целью данной работы являются количественные оценки интенсивности синхротронного излучения РП с дипольной геометрией магнитного поля и релятивистским максвелловским распределением электронов по энергии, а также получение картины пространственного распределения интенсивности излучения на небесной сфере для наземного наблюдателя в зависимости от широты пункта наблюдения и конфигурации РП.
1. Allen C.W. Astrofizicheskie velichiny [Astrophysical quantities]. Moscow: Mir Publ., 1977. 448 p. (In Russian). English edition: Allen C.W. Astrophysical quantities. University of London. The Athlon Press. 1973. 448 p.
2. Astronomicheskii kalendar. Postoyannaya chast. [Astronomical Calendar. Basic Part]. Moscow: Nauka Publ., 1981. 704 p. (In Russian)
3. Borovsky J.E., Cayton T.E., Denton M.H., Belian R.D., Christensen R.A., Ingraham J.C. The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during high-speed stream-driven storms. J. Geophys. Res.: Space Phys. 2016, vol. 121, pp. 5449-5488.
4. Chivers H.J.A., Wells H.W. Observations of unusual radiofrequency noise emission and absorption at 80 Mc/s. J. Atmosph. Terr. Phys. 1959, vol. 17, pp. 13-19.
5. Detrick D.L., Rosenberg T.J. A phased-array radiowave imager for studies of cosmic noise absorption. Radio Sci. 1990, vol. 25, no. 4, pp. 325-338.
6. Driatskii V.M. Priroda anomalnogo pogloshcheniya kosmicheskogo radioizlucheniya v nizhnei ionosfere vysokikh shirot [The Nature of Anomalous Cosmic Radio Noise Absorption in the Lower Ionosphere of High Latitudes]. Leningrad: Gydrometeoizdat Publ., 1974. 224 p. (In Russian).
7. Dyce R.B., Horowitz S. Measurements of synchrotron radiation at central Pacific sites. J. Geophys. Res. 1963, vol. 68, no. 3, pp. 713-721. DOI:https://doi.org/10.1029/JZ068i003p00713.
8. Dyce R.B., Nakada M.R. On the possibility of detecting synchrotron radiation from electrons in the Van Allen belts. J. Geophys. Res. 1959, vol. 64, no. 9, pp. 1163-1168.
9. Egan R.D., Peterson A.M. Auroral noise at HF. J. Geophys. Res. 1960, vol. 65, no. 11, p. 3830.
10. Ellyett C.D. Radio noise of auroral origin. J. Atmosph. Terr. Phys. 1969, vol. 31, pp. 671-682.
11. Friedel R.H.W., Reeves G.D., Obara T. Relativistic electron dynamics in the inner magnetosphere - A review. J. Atmos. Solar-Terr. Phys. 2002, vol. 64, no. 1, pp. 57-72.
12. Eriksen G., Harang L. Radio noise from the ionosphere on 225 MHz during a great ionosphere disturbance. Phys. Norveg. 1969, vol. 4, no. 1, pp. 1-4.
13. Ginzburg V.L., Syrovatsky S.I. Cosmic synchrotron radiation. Uspehi fizicheskikh nauk [Physics-Uspekhi (Adv. Phys. Sci.)] 1965, vol. 87, no. 1, pp. 65-111. (In Russian).
14. Hess W.N. The artificial radiation belt made on July 9, 1962. J. Geophys. Res. 1963, vol. 68, no. 3, pp. 667-683. DOI:https://doi.org/10.1029/JZ068i003p00667.
15. Korchak A.A. On the synchrotron radiation of charged particles in the dipole magnetic field. I. Astronomicheskii Zhurnal [Astronomy Reports]. 1963, vol. 40, pp. 994-1006. (In Russian).
16. Kraus J.D. Radioastronomiya [Radio Astronomy]. Moscow: Sovetskoe Radio Publ., 1973. 456 p. (In Russian). English edition: Kraus J.D. Radio Astronomy. McGraw-Hill Book Company. New York, St. Louis, San Francisco, Toronto, London, Sydney, 1966.
17. Little C.G., Leinbach H. Some measurements of high-latitude ionospheric absorption using extraterrestrial radio waves. Proc. IRE. 1958, vol. 46, no. 1, pp. 334-348.
18. Ochs G.R., Farley Jr. D.T., Bowles K.L., Bandyopadhay P. Observations of synchrotron radio noise at the magnetic equator following the high-altitude nuclear explosion of July 9, 1962. J. Geophys. Res. 1963, vol. 68, no. 3, pp. 701-711. DOI:https://doi.org/10.1029/JZ068i003p00701.
19. Owens H.D., Frank L.A. Electron omnidirectional intensity contours in the Earth`s outer radiation zone at the magnetic equator. J. Geophys. Res. 1968, vol. 73, no. 1, pp. 199-208. DOI:https://doi.org/10.1029/JA073i001p00199.
20. Pakholchik A.G. Radioastrofizika [Radio Astrophysics]. Moscow: Mir Publ., 1973. 252 p. (In Russian). English Edition: Pacholczyk A.G. Radio Astrophysics. W.H. Freeman & Company. San Fracisco, 1970.
21. Peterson A.M., Hower G.L. Synchrotron radiation from high-energy electrons. J. Geophys. Res. 1963, vol. 68, no. 3, pp. 723-734. DOI:https://doi.org/10.1029/JZ068i003p00713.
22. Potapov A.S. Relativistic electrons of the outer radiation belt and methods of their forecast (review). Solar-Terr. Phys. 2017, vol. 3, no. 1, pp. 57-72.
23. Romanova N.V. et al. Statistical correlation of the rate of failures on synchronous satellites with fluxes of energetic electrons and protons. Cosmic Res. 2005, vol. 43, no. 3, pp. 179-185.
24. Savenko I.A., Senchuro I.N., Shavrin P.I. On maximal electron fluxes with E>1 MeV energy in the Earth’s outer radiation belt on 1958-1971. Kosmicheskiye issledovaniya [Cosmic Res.]. 1979, vol. 17, no. 1, pp. 141-145. (In Russian).
25. Thorne R.M., Andreoli L.J. Polyarnaya verkhnyaya atmosfera [Polar Upper Atmosphere]. Moscow: Mir Publ., 1983, pp. 367-379. (In Russian). English Edition: Thorne R.M., Andreoli L.J. Mechanism of the relativistic electron intensive precipitation. Exploration of the Polar Upper Atmosphere. Proc. of the NATO Adv. Study Inst. held at Lillehammer, Norway, May 5-16, 1980. Eds. C.S. Deer, J.A. Holtet. D. Reidel. Publ. Comp. Dordrecht - Boston - London, 1980.
26. Trubnikov B.A. Radiation of plasma in magnetic field. Doklady Akademii nauk [Doklady Physics]. 1958, vol. 118, no. 5, pp. 913-916. (In Russian).
27. Van Allen J.A., Frank L.A., O’Brien B.J. Satellite observations of the artificial radiation belt of July 1962. J. Geophys. Res. 1963, vol. 68, no. 3, pp. 619-627. DOI: 10.1029/ JZ068i003p00619.
28. Vernov S.N., Gorchakov E.V., Kuznetsov S.N. et al. The particle fluxes in the outer magnetic field. Fizika magnitosfery [Magnetospheric Phys.]. Eds. D.J. Williams, G.D. Mead. Moscow: Mir Publ., 1972, pp. 318-344. (In Russian).
29. Vesecky J.F., Peterson A.M. Radio frequency synchrotron radiation from the Van Allen belts. J. Geophys. Res. 1967, vol. 72, no. 5, pp. 1647-1650.
30. Yetes K.W., Wielebinski R. Observational results of radio sky spectrum. Astrophys. J. 1967, vol. 149, pp. 439-440.