Irkutsk, Russian Federation
The paper reports the results of calculations of the center-to-limb intensity of optically thin line emission in EUV and FUV wavelength ranges. The calculations employ a multicomponent model for the quiescent solar corona. The model includes a collection of loops of various sizes, spicules, and free (inter-loop) matter. Theoretical intensity values are found from probabilities of encountering parts of loops in the line of sight with respect to the probability of absence of other coronal components. The model uses 12 loops with sizes from 3200 to 210000 km with different values of rarefaction index and pressure at the loop base and apex. The temperature at loop apices is 1 400 000 K. The calculations utilize the CHIANTI database. The comparison between theoretical and observed emission intensity values for coronal and transition region lines obtained by the SUMER, CDS, and EIS telescopes shows quite satisfactory agreement between them, particularly for the solar disk center. For the data acquired above the limb, the enhanced discrepancies after the analysis refer to errors in EIS measurements.
Sun-corona, UV radiation, atomic data
ВВЕДЕНИЕ
Измерения характеристик корональной плазмы важны для понимания различных процессов, происходящих в солнечной атмосфере, таких как нагрев короны и выбросы корональной массы, а также структуры и физических характеристик активных областей, протуберанцев и корональных дыр. Исследования короны в УФ-диапазоне волн ведутся давно, и в настоящее время ряд превосходных спектрографов на борту спутников дает возможность детальной диагностики электронной плотности и температуры солнечной плазмы. Диагностика по наблюдаемым интенсивностям оптически тонких линий [Mason, Monsignori Fossi, 1994; Laming et al., 1997] использует расчеты излучения переходов возбужденных уровней ионов. Созданная в 1997 г. и непрерывно уточняемая база атомных данных CHIANTI [Dere et al., 1997; Landi et al., 2012] содержит среди прочего пакет программ для таких расчетов.
К настоящему времени опубликовано достаточно большое число работ по исследованию плазмы спокойных участков Солнца и активных областей. Анализ эмиссионных линий УФ дает представление о характеристиках плазмы, но в то же время позволяет выявлять проблемы, возникающие из-за неточности атомных данных и погрешностей при обработке спектрогелиограмм. Атомные данные в значительной мере являются расчетными, и проверка правильности расчетов может быть осуществлена по стабильному источнику излучения, каковым представляется излучение спокойных участков атмосферы Солнца. Исследованию спокойной короны над лимбом на расстояниях 1.03–1.3 солнечного радиуса посвящены работы [Feldman et al., 1998, 1999; Warren, 1999; Allen et al., 2000; Landi et al., 2002a, 2002b; Warren, Warshall, 2002; Feldman, 2003; Mo-han et al., 2003; Parenti et al., 2003; Warren, Brooks, 2009], в которых принималось, что плазма на таких высотах изотермальная.
В работах [Warren, 2005; Brooks, Warren, 2006; Brooks et al., 2009] исследовалась плазма при наблюдениях в центре диска Солнца. В этом случае температура излучающего слоя принималась равной температуре максимума ионизации данного иона. Оценить правомерность таких приближений можно путем расчета интенсивности эмиссионных линий по модели спокойных участков Солнца.
В настоящей работе использована многокомпонентная модель короны спокойного Солнца [Krissinel, 2015], позволившая получить экваториальные распределения центр-лимб в диапазоне волн от 1 до 100 см, хорошо совпадающие с эксперименталь-ными данными. В этой модели распределение компонент по диску Солнца представляет собой случайный процесс, дисперсия и среднее значения которого неизменны. В таком случае излучение Солнца может быть представлено излучением дискретного набора компонент короны.
Целью данной работы является сравнение расчетов интенсивности излучения по модели солнечной короны, созданной по радионаблюдениям, с результатами наблюдений эмиссионных EUV- и FUV-линий на спектрографах SOHO/CDS, SOHO/SUMER и HINODE/EIS, опубликованными в литературе. При адаптации модели к расчетам экваториального распределения интенсивности корональных линий особое внимание было обращено на выбор типа фракционной ионизации, а также на высотные профили плотности и температуры в переходной области петель.
1. Allen R., Landi E., Landini M., Bromage G.E. An empirical test of different ionization balance calculations in an isothermal solar plasma. Astron. Astrophys. 2000, vol. 358, pp. 332-342.
2. Binello A.M., Landi E., Mason H.E., Storey P.J., Brosius J.W. A comparison between theoretical and solar Fe XII UV line intensity ratios. Astron. Astrophys. 2001, vol. 370, pp. 1071-1087. DOI: 10.1051/ 0004-6361:20010255.
3. Borovik V.N., Kurbanov M.Sh., Makarov V.V. Distribution on radio brightness of the quiet Sun in the 2-32 cm range. Soviet Aston. 1992, vol. 36, no. 9, pp. 656-663.
4. Brooks D.H., Warren H.P. The intercalibration of SOHO EIT, CDS-NIS, and TRACE. Astrophys. J. Suppl. Ser. 2006, vol. 164, no. 1, pp. 202-214.
5. Brooks D.H, Warren H.P, Williams D.R., Watanabe T. HINODE/extreme - ultraviolet imaging spectrometer observations of the temperature structure of the quiet corona. Astrophys. J. 2009, vol. 705, no. 1, pp. 1522-1532. DOI: 10.1088/ 0004-637X/705/2/1522.
6. Brown C.M., Feldman U., Seely J.F., Korendyke C.M., Hara H. Wavelengths and intensities of spectral lines in the 171-211 and 245-291 Ǻ ranges from five solar regions recorded by Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode. Astrophys. J. Suppl. Ser. 2008. vol. 176. pp. 511-535.
7. Bryans P., Landi E., Savin D.W. A new approach analyzing solar spectra and updaten collisional ionization equilibrium calculations. II. Updaten ionization rate coefficients. Astrophys. J. 2009, vol. 691, no. 2, pp. 1540-1559. DOI:https://doi.org/10.1088/0004-637X/691/2/1540.
8. Dere K.P., Landi E., Mason H.E., et al. CHI-ANTI - an atomic database for emission lines. Astron. Astrophys. Suppl. Ser. 1997, vol. 125, pp. 149-173.
9. Doschek E.E., Laming G.A., Doschek G.A., Feldman V., Wilhelm K. A comparison of measurements of solar extreme-ultraviolet spectral line intensities emitted by C, N, O, and S ions with theoretical calculations. Astrophys. J. 1999. vol. 518, no. 2. pp. 909-917.
10. Erdely R., Doyle J.G., Perez M.E., Wilhelm K. Center-to-limb width measurements of solar chromospheric, transition region and coronal lines. Astron. Astrophys. 1998, vol. 337, pp. 287-293.
11. Feldman U. Elemental abundances in the upper solar atmosphere. Physica Scripta. 1992, vol. 46, pp. 202-220.
12. Feldman U., Mandelbaum P., Seely J.L., Doschek G.A., Gursky H. The potential for plasma diagnostics from stellar extreme-ultraviolet observations. Astron. Astrophys. Suppl. Ser. 1992, vol. 81, pp. 387-408.
13. Feldman U., Schühle U., Widing K.G., Laming J.M. Coronal composition above the solar equa-tor and the north pole as determined from spectra acquired by the SUMER instrument on SOHO. Astrophys. J. 1998, vol. 505, no. 2, pp. 99-1006.
14. Feldman U., Doschek G.A., Schühle U., Wilhelm K. Properties of quiet - Sun coronal plasmas at distances of 1.03 ≤Ro≤1.50 along the solar equatorial plane. Astrophys. J. 1999, vol. 518, no. 1, pp. 500-507.
15. Feldman U., Warren H.P., Brown C.M., Do-schek G.A. Can then composition of the solar corona be derived from HINODE/extreme-ultraviolet imaging spectrometer spectra. Astro-phys. J. 2009, vol. 695, no. 1, pp. 36-45. DOI: 10.1088/ 0004-637X/695/1/36.
16. Fludra A., Schmelz J.T. The absolute coronal abundance of silfur, calcium, and iron from YOHKOH-BCS flare spectra. Astr. Astrophys, 1999, vol. 348, pp. 286-294.
17. Fontenla I.M., Avrett E.H., Loeser R. Energy balance in the solar transition region. III. Helium emission in hydrostatic, constant- abundance models with diffusion. Astrophys. J. 1993, vol. 406, no. 1, pp. 319-345.
18. Getman K.V., Livshits M.A. A model for the outer solar atmosphere devoid of activity. Astronomichesky zhurnal [Astron. Report]. 1996, vol. 73, pp. 119-124. (In Russian).
19. Hassler D.M., Rottman G.J., Shoub E.C., Holzer T.E. Line broadening of Mg X λλ609 and 625 coronal emission lines observed above the solar limb. Astrophys. J. 1990, vol. 348, no. 1, pp. L77-L80.
20. Kjeldseth Moe O., Nicolas K.R. Emission measures, electron densities, and nonthermal velocities from optically thin UV lines near a quiet solar limb. Astrophys. J. 1977, vol. 211, pp. 579-586.
21. Krissinel B.B. Modeling of the structure of quiescent areas of the solar atmosphere emitting at 1-100 cm. Astron. Rep. 2015, vol. 59, no. 1, pp. 58-71. DOI: 10.1134/ S1063772915010060.
22. Laming J.M., Feldman U., Schühle U., Lemaire P., Curdt W., Wilhelm K. Electron density diagnostic for solar upper atmosphere from spectra obtained by SUMER/SOHO. Astrophys. J. 1997, vol. 485, pp. 911-919.
23. Landi E., Feldman U., Dere K.P. CHIANTI - an atomic database for emission lines. V. Comparison with an isothermal spectrum observed with SUMER. Astrophys. J. Suppl. Ser. 2002a, vol. 139, no. 1, pp. 281-296.
24. Landi E., Feldman U., Dere K.P. A comparison between coronal emission lines from an isothermal spectrum obtained with the coronal diagnostic spectrometer and CHIANTI emissivi-ties. Astrophys. J. 2002b, vol. 574, no. 2, pp. 495-503.
25. Landi E., Feldman U. Propeerties of solar plas-mas near solar maximum above two quiet regions at distance of 1.02 - 1.34 Ro. Astrophys. J. 2003, vol. 592, no. 1, pp. 607-619.
26. Landi E., Del Zanna G., Young P.R., Dere K.P., Mason H.E. CHIANTI - an atomic database for emission lines. XII, Version 7 for database. As-trophys. J. 2012, vol. 744, no. 2, p. 99. DOI:https://doi.org/10.1088/0004-637X/778/1/29.
27. Lantos P., Kundu M.R. The quiet Sun brightness distributions at millimeter wavelenghts and chrospheric inhomogeneties. Astron. Astrophys. 1972, vol. 21, pp. 119-124.
28. Lee H., Yun H.S., Chae J. Nonthermal broadening of UV lines observed at the limb of the quiet SUN. J. Kor. Astron. Soc. 2000, vol. 33, pp. 57-37.
29. Mariska J.T., Feldman U., Doschek G.A. Meas-urements of extreme-ultraviolet emission-line profilies near the solar limb. Astrophys. J. 1978, vol. 226, pp. 698-705.
30. Mariska J.T., Feldman U., Doschek G.A. Non-thermal broadening of extreme ultraviolet emission lines near Solar limb. Astron. Astrophys. 1979, vol. 73, pp. 361-363.
31. Mason H.E., Monsignori Fossi B.C. Spectro-scopic diagnostic in the VUW for solar and stellar plasmas. Astron. Astrophys. Rev. 1994, vol. 6, pp. 123-173.
32. Mohan A., Landi E., Dwivedeli B.N. On the ex-treme-ultraviolet/ultraviolet plasma diagnostics for nitrogen-like ions from spectra obtained by SOHO/SUMER. Astrophys. J. 2003, vol. 582, no. 1, pp. 1162-1171.
33. Parenti S., Landi E., Bromage B.J.I. SOHO-ULYSSES spring 2000 quadrature: coronal diagnostic spectrometer and SUMER results. Astrophys. J. 2003, vol. 590, no. 1, pp. 519-532.
34. Peter H. Analysis of transition-region emission-line profiles from full-disk scans of the Sun using the SUMER instrument on SOHO. Astrophys. J. 1999, vol. 516, no. 1, pp. 490-504.
35. Schmelz J.T., Reames D.V., von Steiger R., Basu S. Composition of the solar corona, solar wind, and solar energetic particles. Astrophys. J. 2012, vol. 755, no. 1, p. 33-40. DOI:https://doi.org/10.1088/0004-637X/755/1/33.
36. Warren H.P. Measuring the physical properties of the solar corona: results from SUMER/SOHO and TRACE. Sol. Phys. 1999, vol. 190, pp. 363-377.
37. Warren H.P., Warshall A.D. Temperature and density measurements in a quiet coronal streamer. Astrophys. J. 2002, vol. 571, no. 1, pp. 999-1007.
38. Warren H.P. A solar minimum irradiance spectrum for wavelengths below 1200Ǻ. Astrophys. J. Suppl. Ser. 2005, vol. 157, no. 1, pp. 147-173.
39. Warren H.P., Brooks D.H. The temperature and density structure of the solar corona. I. Observations of the quiet Sun with the EUV imaging spectrometer on Hinode. Astrophys. J. 2009, vol. 700, no. 2, p. 762-773. DOI:https://doi.org/10.1088/0004-637X/700/1/762.
40. Wilhelm K., Lemaire P., Dammasch I.E., et al. Solar irradiances and radiances of UV and EUV lines during the minimum sunspot activity in 1996. Astron. Astrophys. 1998, vol. 334, p. 685-702.
41. Young P.R., Landi E., Thomas R.J. CHIANTI: an atomic database for emission lines. II. Comparison with the SERTS-89 active region spectrum. Astron. Astrophys. 1998, vol. 329, p. 291-314.
42. Young P.R., Del Zanna G., Mason H.E., Dere K.P., Landi E., Landini M., Doschek G.A., Brown Ch.M., Culhane L., Harra L.K., Watanabe T., Hara H. EUV emission lines and diagnostics observed with Hinode/EIS. Publ. Astron. Soc. Japan. 2007, vol. 59, p. S857-S864.
43. Zirin H., Baument B.M., Hurford G.J. The microwave brightness temperature spectrum of the quiet Sun. Astrophys. J. 1991, vol. 370, no. 1, p. 779-783.