Let H (G) be a space of analytic functions of one variable in simply-connected domain G of the complex plane. It is known that a linear complex convolution operator is generated by a one-variable analytic function, a multivalued one in general. A known problem when all such functions are single-valued is solved. As it turned out, the solution to the problem is connected with the geometry of G domain. Set s(G) with property s(G)+G ⊆ G is termed residue of G domain. A class of simply connected regions whose residue is a connected set is described. Let the linear operator be continuous in function space, analytical in simply-connected domain G, and let it commute with differentiation. Then it can be reduced to a complex convolution operator. It is proved that the function generating such an operator will always be single-valued for regions with a connected residue. When the residue of region G is not connected, there is always a complex convolution operator with a multivalued function generating a kernel.
residue of region, operator commuting with operator of differentiation, kernel of operator
Введение. Рассматриваемые в статье задачи входят в направление исследований, представленное работами [1‒7]. Пусть G - односвязная область в комплексной плоскости C , и последовательность ограниченных расширяющихся областей
с кусочно-гладкой границей исчерпывает G. H (G) - пространство Фреше аналитических в G функций с топологией равномерной сходимости на компактах.
1. Schwartz, L.Theorie generale des fonctions moyenne-periodiques / L. Schwartz. Ann. of Math. - 1947. - Series 2. - V. 48. - Pp. 857-929.
2. Köthe, G.-J. Dualitat in der Funktionentheorie / G.-J. Köthe. - Reine angew. math. - 1953. - Bd. 191. - S. 30-49.
3. Dickson, D. G. Analytic mean periodic functions / D. G. Dickson. Trans. Amer. Math. Soc. - 1964. - V. 110. - Pp. 361-374.
4. Tsar´kov, Yu. M. Izomorfizmy nekotorykh analiticheskikh prostranstv, perestanovochnykh so stepen´yu operatora differentsirovaniya / Yu. M. Tsar´kov. Teoriya funktsiy, funktsional´nyy analiz i ikh prilozheniya. - 1970. - T. 11. - S. 86-92.
5. Bratishchev, A. V. Obshchiy vid lineynykh operatorov, perestanovochnykh s operatsiey differentsirovaniya / A. V. Bratishchev, Yu. F. Korobeynik. Matematicheskie zametki. - 1972. - T. 12. - S. 187-195.
6. Korobeynik, Yu. F. Ob odnom klasse lineynykh operatorov / Yu. F. Korobeynik. Visshi tekhnicheski uchebni zavedeniya. Matematika. - 1973. - T. IX, kn. 3. - S. 23-31.
7. Korobeynik, Yu. F. O razreshimosti v kompleksnoy oblasti nekotorykh obshchikh klassov operatornykh uravneniy / Yu. F. Korobeynik. - Rostov-na-Donu : OOO «TsVVR», 2005. - 246 s.
8. Burbaki, N. Funktsii deystvitel´nogo peremennogo / N. Burbaki. - Moskva : Nauka, 1965. - 424 s.
9. Bratishchev, A. V. Operatory obobshchennogo differentsirovaniya Gel´fonda-Leont´eva i polinomy Brenke / A. V. Bratishchev. Vestnik Don. gos. tekhn. un-ta. - 2010. - T. 10. - № 6 (79). - S. 813-824.
10. Bratishchev, A. V. Ob operatorakh kompleksnoy svertki i obobshchennogo differentsirovaniya / A.V. Bratishchev. Trudy matematicheskogo tsentra im. N. I. Lobachevskogo. - 2013. - T. 46. - S. 127-130.