COMPARATIVE STATISTICAL ANALYSIS OF NEUTRAL WIND IN MID-LATITUDE MESOSPHERE / LOWER THERMOSPHERE BASED ON METEOR RADAR AND FABRY €� PEROT INTERFEROMETER DATA
Abstract and keywords
Abstract (English):
Studies of the upper atmosphere wind are very important both for understanding the mechanism of transformation of exposure energy into heating, movement and chemical activity of the atmosphere, and similar processes of energy transfer from lower to upper atmospheric layers. Instruments and methods for studying the wind velocity and its variations at different height levels usually complement each other in such studies. We perform a comparative analysis of information about the neutral horizontal wind over Eastern Siberia in the winter-spring period obtained by different methods. We observe some features appearing at different heights during geomagnetic storms and sudden stratospheric warming events. We propose a method for comparative statistical analysis of the neutral wind registered at different sites and show its validity. Using this method, we make a quantitative comparison of winds measured over Eastern Siberia in the winter-spring period. The wind measured by the meteor radar and Fabry — Perot interferometer at 90 km has similar direction and absolute velocity. The wind measured by the Fabry — Perot interferometer at 100 km differs from that estimated by the meteor radar only in direction. The wind measured by the Fabry — Perot interferometer at 250 km has a velocity 2.5 times faster and a direction differing by 30–40° from the wind obtained by the meteor radar.

Keywords:
meteor radar, Fabry — Perot interferometer, horizontal wind, mesosphere, lower thermosphere, geomagnetic storm, sudden stratospheric warming, statistical correlation analysis
Text
Text (PDF): Read Download

ВВЕДЕНИЕ

Синхронные наблюдения скорости ветра и температуры оптическими и радиофизическими методами предоставляют полезную информацию об особенностях аэрономии и циркуляции верхней атмосферы. Довольно редко расположенные на поверхности Земли станции наблюдений хоть и не могут дать детальную картину глобального распределения характеристик верхней атмосферы так, как это могут сделать спутниковые системы, тем не менее они обладают несоизмеримо лучшим временным разрешением. Это позволяет наблюдать особенности локального поведения атмосферы, связанные с изменениями, вызываемыми сезонно-суточными вариациями, а также внезапными стратосферными потеплениями (ВСП) или геомагнитной активностью. Кроме того, независимые способы регистрации, как правило, не только подтверждают полученные сведения, но и взаимно дополняют друг друга, позволяя сформировать более целостную картину исследуемого явления.

Совместные исследования поведения ветра в верхней атмосфере при помощи интерферометра Фабри — Перо и метеорного радара выполнялись неоднократно. Исследования подобного рода, в которых была показана значительная роль волновых процессов как источника ошибок при определении скорости горизонтального ветра методом частичных отражений, использовались, например, для верификации новых методов наблюдений [Hines et al., 1993]. Одновременные наблюдения ветра при помощи спектра свечения линии гидроксила 843 нм и отражения от метеорных следов [East et al., 1995] показали состоятельность оптического метода как базы для дальнейшего создания модели нейтрального ветра, поскольку параметры ветра, определяемые радиофизическим методом, интегрировались в значительном диапазоне высот (75–110 км), в то время как слой свечения гидроксила довольно тонок (6 км). Различия наблюдений разными методами авторы также объяснили достаточно большим разнесением наблюдательных пунктов. Авторы работы [Plagmann et al., 1998], посвященной исследованию ветра оптическим и радиофизическим методами, в связи c более близким, чем в работе [East et al., 1995], расположением наблюдательных пунктов, отметили высокую степень корреляции наблюдаемых скоростей ветра и предложили корреляционный метод определения высоты высвечивания гидроксила. Схожий метод определения слоя высвечивания гидроксила также применен в работе [Yu et al., 2017]. Исследования вариации высоты слоя свечения атомарного кислорода на длине волны 557.7 нм по результатам наблюдения метеорного эха радиофизическим методом проведены в работе [Fujii et al., 2004]. В работе [Salah et al., 1999] при проведении наблюдений оптическими и радиофизическими методами одной конкретной области верхней атмосферы также указано на высокую степень корреляции получаемых данных о ветре. Различия в результатах авторы объяснили статистическими погрешностями, разной геометрией областей обзора и наличием локальных градиентов и неоднородностей мелкого масштаба в общем объеме просматриваемой атмосферы. Подобные наблюдения проводились в ходе как самостоятельных исследований [Jiang et al., 2012; Jee et al., 2014], так и международных наблюдательных кампаний [Hu et al., 2014]. Исследования особенностей поведения верхней атмосферы во время сильных геомагнитных бурь при помощи таких наблюдений позволяют оценить вертикальную динамику переноса воздушных масс. В работе [Shiokawa et al., 2003] отмечена двухчасовая задержка вариаций мезосферного ветра по отношению к термосферному при прохождении крупномасштабного ионосферного возмущения, вызванного магнитной бурей. Исследования ВСП набором оптических и радиофизических инструментов позволяют выполнить верификацию моделей циркуляции атмосферы и определить вариации глобальных параметров планетарных волн при этом событии [Wu et al., 2016]. Данная работа посвящена описанию и сравнительному анализу результатов совместных наблюдений ветра в верхней атмосфере в средних широтах, в часовом поясе +8 UT, при помощи интерферометра Фабри — Перо и метеорного радара.

References

1. D’yachenko V.A., Lysenko I.A., Portnyagin Yu.I. Klimaticheskii rezhim vetra nizhnei termosfery [Climatic regime of the lower thermosphere wind]. Obninsk, VNIIGMI-MCD Publ., 1986. 114 p. (In Russian).

2. East S.A., Meredith N.P., Harris M.J., Rees D., Wickwar V.B., Monson I.K., Muller H.G. First summer results on winds in the upper mesosphere derived from the 843 nm hydroxyl emissions measured from the Bear Lake Observatory, Utah. J. Atmos. Terr. Phys. 1995, vol. 57, no. 9, pp. 995-1008. DOI:https://doi.org/10.1016/0021-9169(94)00086-4.

3. Fujii J., Nakamura T., Tsuda T., Shiokawa K. Comparison of winds measured by MU radar and Fabry-Perot interferometer and effect of OI5577 airglow height variations. J. Atmos. Solar-Terr. Phys. 2004, vol. 66 no. 6-9, pp. 573-583. DOI:https://doi.org/10.1016/j.jastp.2004.01.010.

4. Hines C.O., Adams G.W., Brosnahan J.W., Djuth F.T., Sulzer M.P., Tepley C.A., van Baelen J.S. Multi-instrument observations of mesospheric motions over Arecibo: comparisons and interpretations. J. Atmos. Terr. Phys. 1993, vol. 55, no. 3, pp. 241-287. DOI:https://doi.org/10.1016/0021-9169(93)90069-B.

5. Hu G.-Y., Ai Y., Zhang Y.-G., Shan X., Gu J. Thermospheric wind observation by a scanning Fabry-Perot interferometer during MERINO campaign. Acta Geophysica Sinica. 2014, vol. 57, no. 11, pp. 3688-3694. DOI:https://doi.org/10.6038/cjg20141123.

6. Jacobi Ch. Meteor heights during the recent solar minimum. Adv. Radio Sci. 2014, vol. 12, pp. 161-165. DOI:https://doi.org/10.5194/ars-12-161-2014.

7. Jee G., Kim J.-H., Lee C., Kim Y.H. Ground-based observations for the upper atmosphere at King Sejong Station, Antarctica. J. Astron. Space Sci. 2014, vol. 31, no. 2, pp. 169-176. DOI:https://doi.org/10.5140/JASS.2014.31.2.169.

8. Jiang G.Y., Xu J.Y., Yuan W., Ning B.Q., Wan W.X., Hu L.H. A comparison of mesospheric winds measured by FPI and meteor radar located at 40 N. Science China Technological Sciences. 2012, vol. 55, no. 5, pp. 1245-1250. DOI:https://doi.org/10.1007/s11431-012-4773-1.

9. Plagmann M., Marsh S.H., Baggaley W.J., Bennett R.G.T., Deutsch K.A., Fraser G.J., Hernandez G., Lawrence B.N., Plank G.E., Smith R.W. Annual variation of airglow heights derived from wind measurements. Geophys. Res. Lett. 1998, vol. 25, no. 24, pp. 4457-4460. DOI:https://doi.org/10.1029/1998GL900212.

10. Salah J.E., Goncharenko L.P., Sipler D.P., Clark R.R., Tate R.J. Common-volume measurements of mesospheric winds using radar and optical instruments: 1. Comparison of observations. J. Atmos. Solar-Terr. Phys. 1999, vol. 61, no. 17, pp. 1259-1271. DOI:https://doi.org/10.1016/S1364-6826(99)00085-1.

11. Shiokawa K., Otsuka Y., Ogawa T., Kawamura S., Yamamoto M., Fukao S., Nakamura T., Tsuda T., Balan N., Igarashi K., Lu G., Saito A., Yumoto K. Thermospheric wind during a storm-time large-scale traveling ionospheric disturbance. J. Geophys. Res.: Space Phys. 2003, vol. 108, no. A12, no. 1423. DOI:https://doi.org/10.1029/2003JA010001.

12. Vasilyev R.V., Artamonov M.F., Beletsky A.B., Zhereb-tsov G.A., Medvedeva I.V., Mikhalev A.V., Syrenova T.E. Registering upper atmosphere parameters in East Siberia with Fabry-Perot interferometer KEO Scientific “Arinae”. Solar-Terrestrial Physics. 2017, vol. 3, no. 3, pp. 61-75. DOI:https://doi.org/10.12737/stp-33201707.

13. Vasilyev R.V., Klimenko M.V., Klimenko V.V. Some features of the behavior of horizontal wind velocity in winter at heights of the upper atmosphere in Eastern Siberia. XXII Mezhdunarodnyi simpozium “Optika atmosfery i okeana. Fizika atmosfery”. Materialy. [Proc. XXIII International Symposium “Atmospheric and Oceanic Optics. Atmospheric Physics”]. Conf. D. Irkutsk, 2017, pp. D252-D255. (In Russian).

14. Vergasova G.V., Kazimirovsky E.S. External impact on wind in the mesosphere/lower thermosphere region. Geomagnetism and Aeronomy. 2010, vol. 50, no. 7, pp. 914-919. DOI:https://doi.org/10.1134/S0016793210070145.

15. Wu Q., Maute A., Yudin V., Goncharenko L., Noto J., Kerr R., Jacobi C. Observations and simulations of midlatitude ionospheric and thermospheric response to the January 2013 stratospheric sudden warming event. J. Geophys. Res.: Space Phys. 2016, vol. 121, no. 9, pp. 8995-9011. DOI:https://doi.org/10.1002/2016JA023043.

16. Yu T., Zuo X., Xia C., Li M., Huang C., Mao T., Zhang X., Zhao B., Liu L. Peak height of OH airglow derived from simultaneous observations a Fabry-Perot interferometer and a meteor radar. J. Geophys. Res.: Space Phys. 2017, vol. 122, no. 4, pp. 4628-4637. DOI:https://doi.org/10.1002/2016JA023743.

17. URL: http://ckp-rf.ru/ckp/3056 (accessed March 15, 2018).

18. URL: https://acd-ext.gsfc.nasa.gov/Data_services/met/ann_ data.html (accessed March 15, 2018).

Login or Create
* Forgot password?