Ulan-Ude, Russian Federation
Russian Federation
In this paper has been considered the process for simulation of technology for layer-by-layer deformation of sheet bars. In process describing the use of surface models is not desirable for reasons of design and technology, so as for each layer’s surface description its necessary to convert the original surface’s skeleton taking into account the layer thickness change, that leads to processed information’s volume increasing. To solve this problem has been used a perspective method of parametric solid-state simulation for description of sheet bar’s geometry and simulation process. This method has allowed describe a body of multi-layer construction, taking into account special features of sheet material’s layer-by-layer deformation technology. Considered model for assignment of shape and multi-layer structure made it possible to describe the process for formation of the designed shape from flat blank to finished sheet bar’s shape. In such a case, there is no operation for resetting of sought skeleton for interlayer surface. Basic program modules have been developed to describe the process for layer-by-layer deformation in MathCAD. The main program for process description includes the following modules: module for description of parametric solid-state model; module for description of the spinning tool’s motion trajectory; module for calculation of deformation process parameters; module for definition of deformation surface by rounded edges in the specified layer. The developed program complex was probated during manufacture of a detail with pyramidal shape. To implement the layer-by-layer deformation was used a CNC machine. The quoted results of theoretical and experimental researches on the example of manufacturing the pyramidal detail from sheet material have demonstrated that the use of such a form of description for multi-layer construction as parametric solid-state model has a positive impact on the obtaining detail’s surface quality improving.
layer-by-layer deformation, sheet bar, parametrical simulation, multi-layer construction, geometrical simulation.
1. Введение
При численном моделировании процесса формообразования конструкций методом послойного деформирования из листовых материалов возникает важная геометрическая задача построения поверхности деформирования листовой заготовки при воздействии на нее давильного устройства [1; 3–5; 23].
1. Baturin D.A. Khronika razvitiya osnovnykh sposobov posloynogo deformirovaniya [Chronicle of the development of the basic methods of layer-by-layer deformation]. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem [Forging and stamping production. Processing of materials by pressure]. 2015, I. 2, pp. 43-47. (in Russian)
2. Golovanov N. Geometricheskoe modelirovanie [Geometric modeling]. Moscow, Fiziko-matematicheskoy literatury Publ., 2002. 472 p. (in Russian)
3. Krivoshein V.A. Perspektivy ispol'zovaniya tekhnologiy inkremental'noy formovki v sovremennom proizvodstve [Prospects of using incremental molding technologies in modern production]. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [News of Higher Educational Establishments. Mechanical engineering]. 2014, I. 11, pp. 84-89. (in Russian)
4. Chumadin A.S. Issledovanie protsessov posloynogo deformirovaniya listovykh zagotovok s ispol'zovanie frezernogo stanka s ChPU [Investigation of the processes of layer deformation of sheet blanks with the use of a CNC milling machine]. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem [Forging and stamping production. Processing of materials by pressure]. 2014, I. 7, pp. 29-32. (in Russian)
5. Chumadin A.S. Novoe v listovoy shtampovke [New in sheet stamping]. RITM Mashinostroeniya [RITM Machine Building]. 2016, I. 1, pp. 20-22. (in Russian)
6. Arfa H. Finite element modelling and experimental investigation of single point incremental forming process of aluminum sheets: influence of process parameters on punch force monitoring and on mechanical and geometrical quality of parts / H. Arfa, R. Bahloul, H. Belhadjsalah // International Journal of Material Forming. 2013. issue 6. P. 483-510. DOI:https://doi.org/10.1007/s12289-012-1101-z. Available at: www.dx.doi.org/10.1007/s12289-012-1101-z
7. Azaouzi M. Tool path optimization for single point incremental sheet forming using response surface method / M. Azaouzi, N. Lebaal // Simulation Modeling Practice and Theory. 2012. vol. 24. P. 49-58. DOI:https://doi.org/10.1016/j.simpat.2012.01.008. Available at: www.dx.doi.org/10.1016/j.simpat.2012. 01.008
8. Bahloul R. Application of response surface analysis and genetic algorithm for the optimization of single point incremental forming process / R. Bahloul, H. Arfa, H. Belhadjsalah // Key Engineering Materials. 2013. vol. 554-557. P. 1265-1272. DOI:https://doi.org/10.4028/www.scientific.net/KEM. 554-557. 1265. Available at: www.dx.doi.org/10.4028/www. scientific.net/KEM.554-557.1265
9. Behera A.K. Tool path generation for single point incremental forming using intelligent sequencing and multi-step mesh morphing techniques / A.K. Behera, B. Lauwers, J.R. Duflou // International Journal of Material Forming. 2014. vol. 8. issue 4. P. 517-532. DOI:https://doi.org/10.1007/s12289-014-1174-y. Available at: www.dx.doi.org/10.1007/s12289-014-1174-y
10. Behera A.K. Tool path generation framework for accurate manufacture of complex 3D sheet metal parts using single point incremental forming / A.K. Behera, B.Lauwers, J.R. Duflou // Computers in Industry. 2014. vol. 65. issue 4. P. 563-584. DOI:https://doi.org/10.1016/j.compind.2014.01.002. Available at: www.dx.doi.org/10.1016/j.compind. 2014.01.002
11. Benmessaoud R. A tool path generation method for the multi-pass incremental forming process investigation / R. Benmessaoud // International Journal of Advanced Research in Computer Science and Software Engineering. 2014. vol. 4. issue 5. P. 1035-1044. Available at: http:// www.ijarcsse.com/docs/papers/Volume_4/5_May2014/V4I5-0569.pdf
12. Durikovic R. Modelling with three types of Coons Bodies [Tekst] / R. Durikovic, S. Czanner // International Journal of Modelling & Simulation. 2004. vol. 24. no. 2. P. 97-101.
13. Guangcheng Z. Forming process of automotive body panel based on incremental forming technology / Z. Guangcheng, X. Jinbo, S. Xiaofan, Z. Xun, L. Chuankai // Metallurgical and Mining Industry. 2015. vol. 1. issue 12. P. 350-357. Available at: http:// www.metaljournal.com.ua/ assets/Journal/english-edition/MMI_2015_12/054Guangcheng-Zha.pdf
14. Kim T.J. Improvement of formability for the incremental sheet metal forming process / T.J. Kim, D.Y. Yang // International Journal of Mechanical Sciences. 2000. vol. 42. issue 7. P. 1271-1286. DOI:https://doi.org/10.1016/S0020-7403(99)00047-8. Available at: www.dx.doi.org/10.1016/S0020-7403(99)00047-8
15. Lanouar B.A. Simplified numerical approach for incremental sheet metal forming process / B.A. Lanouar, R. Camille, D. Arnaud, N. Mohammed // Engineering Structures.2014. vol. 62-63. P. 75-86. DOI:https://doi.org/10.1016/j.engstruct. 2014.01.033. Available at: www.dx.doi.org/10.1016/j.engstruct. 2014.01.033
16. Lenđel R. Single point incremental forming of large-size components / R. Lenđel // Journal for Technology of Plasticity. 2014. vol. 39. no. 1. P. 59-67. Available at: http://www.dpm.ftn.uns.ac.rs/ jtp/download/2014/1/Article7.pdf
17. Li Y. Deformation mechanics and efficient force prediction in single point incremental forming / Y. Li, W.J.T. Daniel, Z. Liu, H. Lu, P.A. Meehan // Journal of Materials Processing Technology. 2015. vol. 221. P. 100-111. DOI:https://doi.org/10.1016/j.jmatprotec.2015.02.009. Available at: www.dx.doi.org/10.1016/j.jmatprotec.2015.02.009
18. Liu Z. Multi-pass deformation design for incremental sheet forming: Analytical modeling, finite element analysis and experimental validation / Z. Liu, WJT. Daniel, Y. Li, S. Liu // Journal of Materials Processing Technology. 2014. vol. 214. issue 3. P. 620-634. DOI: 10.1016 /j.jmatprotec.2013.11.010. Available at: www.dx.doi.org/10.1016/j.jmatprotec.2013. 11.010
19. Liu Z. Tool path strategies and deformation analysis in multi-pass incremental sheet forming process / Z. Liu, Y. Li, P.A. Meehan // The International Journal of Advanced Manufacturing Technology. 2014. vol. 75. issue 1. P. 395-409. DOI:https://doi.org/10.1007/s00170-014-6143-6. Available at: www.dx.doi.org/10.1007/s00170-014-6143-6
20. Lu B. Feature-based tool path generation approach for incremental sheet forming process / B. Lu, J. Chen, H. Ou // Journal of Materials Processing Technology. 2013. vol. 213. issue 7. P. 1221-1233. DOI:https://doi.org/10.1016/j.jmatprotec. 2013.01.023. Available at: www.dx.doi.org/10.1016/j.jmatprotec.2013.01.023
21. Malyer E. The influence of tool path strategy on geometric accuracy in incremental forming / E. Malyer // Key Engineering Materials. 2013. vol. 554-557. P. 1351-1361. DOI:https://doi.org/10.4028/www.scientific.net/KEM.554-557.1351. Available at: www.dx.doi.org/10.4028/www.scientific.net/ KEM.554-557.1351
22. Mohammadi A. On the geometric accuracy in shallow sloped parts in single point incremental forming / A. Mohammadi, H. Vanhove, A. Bael, J.R. Duflou // Key Engineering Materials. 2013. vol. 554-557. P. 1443-1450. DOI:https://doi.org/10.4028/www.scientific.net/KEM.554-557.1443. Available at: www.dx.doi.org/10.4028/www.scientific.net/KEM.554-557.1443
23. Nimbalkar D.H. Review of incremental forming of sheet metal components / D.H. Nimbalkar, V.M. Nandedkar // International Journal of Engineering Research and Applications. 2013. vol. 3, -issue 5. P. 39-51. Available at: http:// www.ijera.com/papers/Vol3_issue5/I353951.pdf
24. Silva M.B. Single-point incremental forming and formability-failure diagrams / M.B. Silva, M. Skjoedt, A.G. Atkins, N. Bay, P.A.F. Martins // The Journal of Strain Analysis for Engineering Design. 2008. vol. 43. P. 15-35. DOI:https://doi.org/10.1243/03093247JSA340. Available at: www.dx.doi.org/10.1243/03093247JSA340
25. Skjoedt M. Creating helical tool paths for single point incremental forming / M. Skjoedt, M.H. Hancock, N. Bay // Key Engineering Materials. 2007. vol. 344. P. 583-590. DOIhttps://doi.org/10.4028/www.scientific.net/ KEM.344.583. Available at: www.dx.doi.org/10.4028/www.scientific.net/KEM.344. 583
26. Suresh K. Tool path definition for numerical simulation of single point incremental forming / K. Suresh, A. Khan, S.P. Regalla // Procedia Engineering. 2013. vol. 64. P. 536-545. DOI:https://doi.org/10.1016/j.proeng.2013.09.128. Available at: www.dx.doi.org/10.1016/j.proeng.2013. 09.128
27. Zhu H. Spiral tool-path generation with constant scallop height for sheet metal CNC incremental forming / H. Zhu, Z. Liu, J. Fu // International Journal of Advanced Manufacturing Technology. 2011. vol. 54. issue 9-12. P. 911-919. DOI:https://doi.org/10.1007/s00170-010-2996-5. Available at: www.dx.doi.org/10.1007/s00170-010-2996-5