Praga, Czech Republic
Moscow, Russian Federation
Moskva, Russian Federation
We present the results of modeling of the ionospheric Alfvén resonator (IAR) and compare the results of electromagnetic waves passing through IAR to Earth's surface with the dynamic spectrum of simultaneous observations of spectral resonance structures (SRS). IAR is simulated using ionospheric parameters obtained from measurements made with the CP-1 program of the Scandinavian EISCAT radar. The IAR model is employed to calculate coefficients of reflection RC(f) and transmission TC(f) of electromagnetic waves in the frequency range 0–5 Hz. The observed dynamic SRS spectrograms consist of spectral lines, in which frequencies, time variations of frequencies, and distanc-es between adjacent resonant lines are confidently de-termined. The calculated frequencies of maxima of the signal transmission coefficient TC to Earth's surface correspond to the observed frequencies of the dynamic spectrum of SRS.
ionospheric Alfvén resonator, reflection and transmission coefficients, dynamic spectra, spectral resonance structures
ВВЕДЕНИЕ
Многочисленные исследования спектральных резонансных структур (СРС) связывают их появление на Земле с влиянием ионосферного альфвеновского резонатора (ИАР) [Pokhotelov et al., 2001] на прохождение альфвеновских волн в частотном диапазоне от долей до нескольких герц через ионосферу Земли. Первые экспериментальные исследования СРС были проведены на среднеширотной станции вблизи Нижнего Нов-города и на высокоширотной станции Кильписъярви (Kilpisjärvi, Финляндия, L=6) [Belyaev et al., 1989, 1990]. Типичные СРС показаны на рис. 1 [Pokhotelov et al., 2003]. Проводились исследования СРС на высоких широтах [Yahnin et al., 2003; Pokhotelov et al., 2003]. В работе [Гульельми, Потапов, 2017] показана связь появления СРС в обс. Монды с солнечным ветром. Кроме наблюдений на земной поверхности, были проведены наблюдения СРС на спутниках FREJA и FAST [Grzesiak, 2000; Chaston et al., 2002]. При исследовании связи СРС на земной поверхности с влиянием ИАР модель ионосферы строилась на основе известных численных моделей ионосферы и реальных ионосферных параметров, полученных с использованием ионозондов [Belyaev et al., 1999; Семенова, Яхнин, 2014]. В нашей работе для построения модели ионосферы были использованы реальные данные по ионосферной плазме, измеренные с помощью программы СР-1 скандинавского радара EISCAT, расположенного вблизи ст. Кильписъярви, на которой одновременно наблюдались СРС. Цель нашей работы состояла в количественном описании спектров СРС, возникающих при прохождении электромагнитных волн в частотном диапазоне 0–5 Гц через ионосферу к земной поверхности под влиянием альфвеновского резонатора.
Рис. 1. Типичный динамический спектр СРС, зарегистрированный в обс. Борок 15.09.1996 г.
1. Belyaev P.P., Polyakov S.V., Rapoport V.O., Trakhtengertz V.Y. Experimental studies of resonance structure in the spectrum of atmospheric electromagnetic background noise in the range of short-period geomagnetic pulsations. Radiophysics and Quantum Electronics. 1989, vol. 32, pp. 491-498.
2. Belyaev P.P., Polyakov S.V., Rapoport V.O., Trakhtengertz V.Y. The ionospheric Alfvén resonator. J. Atmos. Terr. Phys. 1990, vol. 52, pp. 781-788.
3. Belyaev P.P., Bosinger T., Isaev S.V., Kangas J. First evidence at high latitudes for the ionospheric Alfvén resonator. J. Geophys. Res. 1999, vol. 104, pp. 4305-4317.
4. Chaston C.C., Bonell J.W., Carlson C.V., Berthomier M, Peticolas L.M., Roth I., McFadden J.P. Electron acceleration in the ionospheric Alfvén resonator. J. Geophys. Res. 2002, vol. 107. DOI: 1029/2002JA009272.
5. Grzesiak M. Ionospheric Alfvén resonator. Geophys. Res. Lett. 2000, vol. 27, pp. 923-926.
6. Guglielmi A.V., Potapov A.S. Interplanetary magnetic field effect on ULF oscillations of ionospheric resonator. Kosmicheskie issledovaniya [Cosmic Res.]. 2017, vol. 55, no. 4, pp. 263-267. (In Russian).
7. Mursula K., Prikner K., Feygin F.Z., Braysy T., Kangas J., Kerttula R., Pollari P., Pikkarainen T., Pokhotelov O.A. Non-stationary Alfvén resonator: new results on Pc1 pearls and IPDP events. J. Atm. Solar-Terr. Phys. 2000, vol. 62, pp. 299-309.
8. Pokhotelov O.A., Khruschev V., Parrot V., Senchenkov S., Pavlenko V.P. Ionospheric Alfvén resonator revisited. Feedback instability. J. Geophys. Res. 2001, vol. 106, pp. 25813-25824.
9. Pokhotelov O.A., Feygin F.Z, Khabazin Yu.G., Khruschev V.V., Bosinger T., Kangas J., Prikner K. Observations of IAR spectral resonance structures at a large triangle of geophysical observatories. Proc. XXVI Annual Seminar“ Physics of Auroral Phenomena”. Apatity, 2003, pp. 123-126.
10. Prikner K., Vagner V. Numerical modeling of the ionospheric filtration of an ULF micropulsation signal. Studia Geophysica et Geodaetica. 1983, vol. 27, pp. 173-190.
11. Prikner K., Vagner V. The ionosphere as an Alfvén resonator in the Pc1 micropulsation range. Studia Geophysica et Geodaetica. 1990, vol. 34, pp. 342-361.
12. Prikner K., Vagner V. Numerical solution to the problem of ionospheric filtration of ULF waves in the Pc1 range. The total wave field inside the ionospheric transition layer. Studia Geophysica et Geodaetica. 1991, vol. 35, pp. 90-99.
13. Prikner K., Mursula K., Feygin F.Z., Kangas J., Kerttula R., Pikkarainen T., Pokhotelov O.A., Vagner V. Non-stationary Alfvén resonator: vertical profiles of wave characteristics. J. Atmosph. Solar-Terr. Phys. 2000, vol. 62, pp. 311-322.
14. Prikner K., Mursula K., Kangas J., Feygin F.Z. Ionospheric Alfvén resonator control over the frequency-variable Pc1 event in Finland on May 14, 1997. Studia Geophysica et Geodaetica. 2001, vol. 45, pp. 363-381.
15. Semenova N.V., Yakhnin A.G. Abrupt change of resonance structure in electromagnetic noise spectrum in hertz range during a substorm. Geomagnetizm i aeronomiya [Geomagnetism and Aeronomy]. 2014, vol. 54, pp. 341-347. (In Russian).
16. Yahnin A.G., Semenova N.V., Ostapenko A.A., Kangas J., Manninen J., Turunen T. Morphology of the spectral resonance structure of the electromagnetic background noise in the range of 0.1-4 Hz at L=5.2. Ann. Geophys. 2003, vol. 21, pp. 779-786.