Abstract and keywords
Abstract (English):
Process modeling is one of the main directions in science and engineering. When there is a model of simple system it is possible to obtain the parameters of its state vector before a process starts. However, the modeling of complex processes (systems) applying standard methods of computing and simulation software is confronted with difficulties of chaotic dynamics of such systems. A number of models that allow to describing the dynamics of complex biological dynamic systems is extremely small, as to repeat the same results of experiments it is impossible on the basis of deterministic or stochastic models. In additional, the authors propose a model for description of human state vector through three-compartment two-cluster control system. This model may be implemented using an application package exhibiting an operation of each cluster separately. The output signals of the model seen can be compared with the actual experimental data observed as output signals. The signals obtained at the output of the simulation model show different states of the system under external control actions which cause the change in the internal properties and states due to external (disturbance) signal. Control external signal from the first cluster and accordingly the output signal from the second cluster were divided into four main components that had the same analogues in the dynamics of complex biological behavior of dynamical systems [2,4].

Keywords:
three-compartment two-cluster model, biological systems, external control action, dissipation factor
Text

Введение. Одно из основных направлений в науке и технике - это поиск формальных моделей, закономерностей и алгоритмов, описывающих те или иные объекты, системы, процессы, явления, и, как следствие, большинство современных научных исследований посвящено вопросам их адекватной формализации. Несомненно, результаты таких исследований крайне востребованы и практически значимы для любого направления научных знаний человека. Всё это позволяет переходить на всё новый и новый уровень понимания и оперирования окружающим миром, тем более, если речь идёт о сложных биосистемах.

 

При исследовании относительно простых предметных областей (технических систем) процедура получения формальных описаний предметной области хорошо отработана и известна, получаемые результаты

References

1. Es´kov VM. Fizika i teoriya khaosa-samoorganizatsii v izuchenii zhivogo i evolyutsii razumnoy zhizni. Slozhnost´. Razum. Postaeklassika. 2013;2:77-95. Russian.

2. Es´kov VM, Khadartsev AA, Gavrilenko TV, Vatamova SN. Variabernost´ sostoyaniya parametrov funktsional´nykh sistem organizma cheloveka na primere neproizvol´nykh i proizvol´nykh dvizheniy chelo-veka. Nelineynaya dinamika v kognitivnykh issledovaniyakh - 2013: Trudy III vserossiyskoy konferentsii g. Nizhniy Novgorod 24-27 sentyabrya 2013. Nizhniy Novgorod: Institut prikladnoy fiziki Nil RAN; 2013. Russian.

3. Es´kov VM, Khadartsev AA, Gudkov AV, Gudkova SA, Sologub LI. Filosofsko-biofizicheskaya interpretatsiya zhizni v ramkakh tret´ey paradigmy [Philosophical and biophysical interpretation of life within the framework of third paradigm]. Vestnik novykh meditsinskikh tekhnologiy. 2012;19(1):38-41. Russian.

4. Es´kov VM, Antonishkis YuA, Lobzin YuV, Nesmeyanov AAKhadartsev AA. Novye predstavleniya о mekhanizme zashchitnoy reaktsii kletok krovi na ekstremal´noe vozdeystvie [New representations about the mechanism of protective reaction of blood cells on extreme influence]. Vestnik novykh meditsinskikh tekhnologiy. 2012;19(l):24-8. Russian.

5. Es´kov VM, Es´kov W, Filatova OE, Khadartsev AA. Osobye svoystva biosistem i ikh modeliro-vanie [Special oriperties of biosystems and their modelling]. Vestnik novykh meditsinskikh tekhnologiy. 2011;18(3):331-2. Russian.

6. Es´kov VM, Filatova OE, Khadartsev AA, Khadartseva KA. Fraktal´naya dinamika povedeniya chelo-vekomernykh sistem [Fractal dynamics of conduct chelovekomernyh]. Vestnik novykh meditsinskikh tekhnologiy. 2011;18(3):330-1. Russian.

7. Eskov VM. Models of hierarchical respiratory neuron networks. Neurocomputing, 1996;11:203-26.

8. Eskov VM, Eskov W, Filatova OE. Characteristic features of measurements and modeling for biosystems in phase spaces of states. Measurement Techniques (Medical and Biological Measurements). 2011;53(12):1404-10.

9. Eskov VM, Gavrilenko TV, Kozlova W, Filatov MA. Measurement of the dynamic parameters of microchaos in the behavior of living biosystems. Measurement Techniques. 2012;55(9): 1096-100.

10. Eskov VM, Kulaev SV, Popov YuM, Filatova OE. Computer technologies in stability measurements on stationary states in dynamic biological systems. Measurement Techniques. 2006;49(1):59-65.

11. Prigogine I. The Die Is Not Cast. Futures. Bulletin of the Word Futures Studies Federation. 2000;25(4):17-9.

Login or Create
* Forgot password?