SIBNET €� SIBERIAN GLOBAL NAVIGATION SATELLITE SYSTEM NETWORK: CURRENT STATE
Rubrics: REVIEWS
Abstract and keywords
Abstract (English):
In 2011, ISTP SB RAS began to deploy a routinely operating network of receivers of global navigation satellite system signals. To date, eight permanent and one temporal sites in the Siberian region are operating on a regular basis. These nine sites are equipped with 12 receivers. We use nine multi-frequency multi-system receivers of Javad manufacturer, and three specialized receivers NovAtel GPStation-6 designed to measure ionospheric phase and amplitude scintillations. The deployed network allows a wide range of ionospheric studies as well as studies of the navigation system positioning quality under various heliogeophysical conditions. This article presents general information about the network, its technical characteristics, and current state, as well as the main research problems that can be solved using data from the network.

Keywords:
ionosphere, GNSS, GPS, GLONASS, Beidou, total electron content, scintillations, Javad, NovAtel
Text
Text (PDF): Read Download

ВВЕДЕНИЕ

В последние двадцать лет глобальные навигационные спутниковые системы (ГНСС) стали существенной частью экономической (в широком смысле) деятельности человека [Hofmann-Wellenhof et al., 2008]. На первом этапе существовало две ГНСС: американская система GPS (Global Positioning System) и российская ГЛОНАСС (Глобальная навигационная спутниковая система). В настоящее время практически завершено развертывание ГНСС Beidou/Compass в Китае, запущено более половины группировки европейской системы Galileo, развертываются спутники поддержки SBAS (Satellite Based Augmentation System).

С одной стороны, ГНСС обеспечили возможность для достаточно точной независимой навигации, что нашло широкое применение в строительстве, сельском хозяйстве, авиации, картографии и других областях. С другой стороны, ГНСС дают новый богатый экспериментальный материал по физике ионосферы, атмосферы, а также геодинамике. В области физики ионосферы появилось большое количество работ, основанных на двухчастотных фазовых измерениях, выполняемых приемниками ГНСС. Первые работы велись в основном с использованием системы GPS по причине наличия достаточного числа станций и стабильно ра

ботающей орбитальной группировки. В последние годы широко используется отечественная система ГЛОНАСС и все активнее используются альтернативные ГНСС, такие как Beidou/Compass [Kunitsyn et al., 2016] и SBAS [Kunitsyn et al., 2015]. В ионосферных исследованиях основным параметром, определяемым с помощью ГНСС-измерений, является полное электронное содержание (ПЭС, TEC — Total Electron Content). Единица измерения ПЭС — TECU (Total Electron Content Unit), 1 TECU=1016 м–2.

Значительная часть опубликованных работ, связанных с ГНСС-исследованиями ионосферы, посвящена изучению ионосферных неоднородностей различного масштаба [Афраймович, Перевалова, 2006; Jakowski et al., 2012a; Afraimovich et al., 2013; Otsuka et al., 2013; Ding et al., 2014] и ионосферных мерцаний [Aarons, 1997; Mitchell et al., 2005], картированию ионосферы [Hernández-Pajares et al., 2009] и определению абсолютных ионосферных параметров [Ясюкевич и др., 2017a; Lanyi, Roth, 1988], а также ГНСС-радиотомографии ионосферы [Ruffini et al., 1998; Mitchell, Spencer, 2003; Nesterov, Kunitsyn, 2011]. Широкое применение находит технология ассимиляции. Ассимиляционные модели, например Utah State University Global Assimilation of Ionospheric Measurements (USU-GAIM) Model [Schunk et al., 2004] или модель Центральной аэрологической обсерватории Росгидромета [Solomentsev et al., 2012], используются как для научных исследований физики процессов, так и для решения ряда других задач. В прикладном аспекте ГНСС используются для корректировки радиотехнических систем [Afraimovich, Yasukevich, 2008; Ясюкевич и др., 2017б], включая радарные системы [Ovodenko et al., 2015], для улучшения качества моделей [Arikan et al., 2016], что особенно актуально в системах реального времени [Zolesi et al., 2004].

Развивается направление построения индексов состояния ионосферы и околоземного космического пространства на основе данных ГНСС. В настоящий момент широко известен индекс ROTI — Rate-of-TEC index [Pi et al., 1997] и его улучшенные версии AATR — Along Arc TEC Rate [Juan et al., 2018] и DIX — Disturbance Ionosphere indeX [Jakowski et al., 2012b]. Существуют индексы, показывающие возмущенность ионосферы локально [Voeykov et al., 2016], регионально [Nesterov et al., 2017] и глобально [Gulyaeva, Stanislawska, 2008]. Кроме того, разработана методика оценки общего уровня ионосферной плазмы — глобального электронного содержания (ГЭС) [Afraimovich et al., 2008], основанная на технологии глобальных ионосферных карт (GIM — Global Ionosphere Maps) [Mannucci et al., 1998; Schaer et al., 1998].

___________________________________________________________________________

Работа выполнена в рамках базового финансирования программы ФНИ II.16 на оборудовании центра коллективного пользования «Ангара», http://ckp-rf.ru/ckp/3056. Обработка рядов вариаций ПЭС выполнена в рамках гранта Российского научного фонда проект № 17-77-20005.

References

1. Aarons J. Global positioning system phase fluctuations at auroral latitudes. J. Geophys. Res. 1997, vol. 102, A8, pp. 17219-17231. DOI:https://doi.org/10.1029/97JA01118.

2. Afraimovich E.L. Interferentsionnye metody zondirovaniya ionosfery [Interferometry techniques for ionospheric radiosensing]. Moscow, Nauka Publ., 1982. 198 p. (In Russian).

3. Afraimovich E.L., Perevalova N.P. GPS monitoring verkhei atmosfery Zemli [GPS monitoring of the Earth’s upper atmosphere]. Irkutsk, SC RRS SB RAMS Publ., 2006, 480 p. (In Russian).

4. Afraimovich E.L., Yasukevich Yu.V. Using GPS-GLONASS-GALILEO data and IRI modeling for ionospheric calibration of radio telescopes and radio interferometers. J. Atmos. Solar-Terr. Phys. 2008, vol. 70, no. 15, pp. 1949-1962. DOI:https://doi.org/10.1016/j.jastp.2008.05.006.

5. Afraimovich E.L., Astafyeva E.I., Oinats A.V., Yasukevich Yu.V., Zhivetiev I.V. Global electron content: a new conception to track solar activity. Ann. Geophys. 2008, vol. 26, pp. 335-344. DOI:https://doi.org/10.5194/angeo-26-335-2008.

6. Afraimovich E.L., Zherebtsov G.A., Perevalova N.P., Sankov V.A., Bashkuyev Yu.B., Kurkin V.I., Kovalenko V.A., Rakhmatulin R.A., Mikhalev A.V., Berngardt O.I., Aleshkov V.M., Lipko Yu.V., Pirog O.M., Polekh N.M., Voeykov S.V., Yasyukevich Yu.V., Ishin A.B., Edemskiy I.K., Podlesny A.V., Brynko I.G., Pashinin A.Yu., Molodykh S.I., Ivanova V.A., Astafyeva E.I., Polyakova A.S., Lukhnev A.V., Lukhneva O.F., Ashurkov S.V., Dobrynina A.A., Byzov L.M., Miroshnichenko A.I., Chernykh E.N., Dembelov M.G., Buyanova D.G., Naguslaeva I.B., Khaptanov V.B., Angarkhaeva L.Kh., Advokatov V.R., Balkhanov V.K., Ayurov D.B., Khomutov S.Yu., Zhivetiev I.V. Seismo-ionosphernye i seismoelectromagnitnye protsessy v Baykalskoi riftovoi zone [Seismoionospheric and Seismoelectromagnetic Processes in the Baikal Rift Zone]. Ed. G.A. Zherebtsov. Novosibirsk, SO RAN Publ., 2012. (In Russian).

7. Afraimovich E.L., Astafyeva E.I., Dem’yanov V.V., Edemskiy I.K., Gavrilyuk N.S., Ishin A.B., Kosogorov E.A., Leonovich L.A., Lesyuta O.S., Palamartchouk K.S., Perevalova N.P., Polyakova A.S., Smolkov G.Y., Voeykov S.V., Yasyukevich Yu.V., Zhivetiev I.V. Review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather and Space Climate. 2013, vol. 3, A27. DOI:https://doi.org/10.1051/swsc/2013049.

8. Alpatov V.V., Kunitsyn V.E., Lapshin V.B., Romanov A.A., Tasenko S.V. Experience of creation by Roshydromet of radiotomography network for the ionosphere research and monitoring. Geliogeofizicheskie issledovaniya [Heliogeophys. Res.]. 2012, iss. 2. pp. 60-71. (In Russian).

9. Arikan F., Shukurov S., Tuna H., Arikan O., Gulyaeva T.L. Performance of GPS slant total electron content and IRI-Plas-STEC for days with ionospheric disturbance. Geodesy and Geodynamics. 2016, vol. 7, no. 1, pp. 1-10. DOI:https://doi.org/10.1016/j.geog. 2015.12.009.

10. Astafyeva E., Zakharenkova I., Huba J.D., Doornbos E., van den IJssel J. Global Ionospheric and thermospheric effects of the June 2015 geomagnetic disturbances: Multi-instrumental observations and modeling. J. Geophys. Res.: Space Phys. 2017, vol. 122, pp. 11,716-11,742. DOI:https://doi.org/10.1002/2017JA024174.

11. Bender M., Dick G., Ge M., Deng Z., Wickert J., Kahle H.-G., Raabe A., Tetzlaf G. Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Adv. Space Res. 2011, vol. 47, pp. 1704-1720. DOI: 10.1016/ j.asr.2010.05.034.

12. Bevis M., Businger S., Herring T.A., Rocken C., Anthes R.A., Ware R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. 1992, vol. 97, D14, pp. 15787-15801. DOI:https://doi.org/10.1029/92JD01517.

13. Devi M., Barbara A.K., Oyama K.-I., Chen C.-H. Earthquake induced dynamics at the ionosphere in presence of magnetic storm. Adv. Space Res. 2014, vol. 53, pp. 609-618. DOI:https://doi.org/10.1016/j.asr.2013.11.054.

14. Ding F., Wan W., Li Q., Zhang R., Song Q., Ning B., Liu L., Zhao B., Xiong B. Comparative climatological study of large-scale traveling ionospheric disturbances over North America and China in 2011-2012. J. Geophys. Res.: Space Phys. 2014, vol. 119, pp. 519-529. DOI:https://doi.org/10.1002/2013JA019523.

15. Dong Z., Jin S. 3-D water vapor tomography in Wuhan from GPS, BDS and GLONASS observations. Remote Sens. 2018, vol. 10, no. 1, 62. DOI:https://doi.org/10.3390/rs10010062.

16. Dow J.M., Neilan R.E., Rizos C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geodesy. 2009, vol. 83, pp. 191-198. DOI: 10.1007/ s0019000803003.

17. Gulyaeva T.L., Stanislawska I. Derivation of a planetary ionospheric storm index. Ann. Geophys. 2008, vol. 26, pp. 2645-2648. DOI:https://doi.org/10.5194/angeo-26-2645-2008.

18. Hernández-Pajares M., Juan J.M., Sanz J., Orus R., Garcia-Rigo A., Feltens J., Komjathy A., Schaer S.C., Krankowski A. The IGS VTEC maps: a reliable source of ionospheric information since 1998. J. Geodesy. 2009, vol. 83, no. 3-4. pp. 263-275. DOI:https://doi.org/10.1007/s00190-008-0266-1.

19. Hofmann-Wellenhof B., Lichtenegger H., Wasle E. GNSS-Global Navigation Satellite Systems. Springer, 2008. 531 p. DOI:https://doi.org/10.1007/978-3-211-73017-1.

20. Jakowski N., Beniguel Y., De Franceschi G., Pajares M.H., Jacobsen K.S., Stanislawska I., Tomasik L., Warnant R., Wautelet G. Monitoring, tracking and forecasting ionospheric perturbations using GNSS techniques. J. Space Weather and Space Climate. 2012a, vol. 2, A22. DOI:https://doi.org/10.1051/swsc/2012022.

21. Jakowski N., Borries C., Wilken V. Introducing a Disturbance Ionosphere Index (DIX). Radio Sci. 2012b, vol. 47, RS0L14. DOI:https://doi.org/10.1029/2011RS004939.

22. Jayachandran P.T., Langley R.B., MacDougall J.W., Mushini S.C., Pokhotelov D., Hamza A.M., Mann I.R., Milling D.K., Kale Z.C., Chadwick R., Kelly T., Danskin D.W., Carrano C.S. The Canadian high arctic ionospheric network (CHAIN). Radio Sci. 2009, vol. 44, RS0A03. DOI: 10.1029/ 2008RS004046.

23. Jin S., Occhipinti G., Jin R. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth Sci. Rev. 2015, vol. 147, pp. 54-64. DOI:https://doi.org/10.1016/j.earscirev. 2015.05.003.

24. Juan J.M., Sanz J., Rovira-Garcia A., González-Casado G., Ibáñez D., Perez R.O. AATR an ionospheric activity indicator specifically based on GNSS measurements. J. Space Weather and Space Climate. 2018, vol. 8, A14. DOI:https://doi.org/10.1051/swsc/2017044.

25. Kunitsyn V., Kurbatov G., Yasyukevich Yu., Padokhin A. Investigation of SBAS L1/L5 signals and their application to the ionospheric TEC studies. Geoscience and Remote Sensing Lett. 2015, vol. 12, no. 3, pp. 547-551. DOI:https://doi.org/10.1109/LGRS. 2014.2350037.

26. Kunitsyn V.E., Padokhin A.M., Kurbatov G.A., Yasyukevich Yu.V., Morozov Yu.V. Ionospheric TEC estimation with the signals of various geostationary navigational satellites. GPS Solutions. 2016, vol. 20, no. 4, pp. 877-884. DOI:https://doi.org/10.1007/s10291-015-0500-2.

27. Lanyi G.E., Roth T. A comparison of mapped and measured total ionospheric electron content using global positioning system and beacon satellite observations. Radio Sci. 1988, vol. 23, no. 4, pp. 483-492. DOI:https://doi.org/10.1029/rs023 i004p00483.

28. Larson K.M., Nievinski F.G. GPS snow sensing: results from the EarthScope Plate Boundary Observatory. GPS Solutions. 2013, vol. 17, pp. 41-52. DOI:https://doi.org/10.1007/s10291-012-0259-7.

29. Löfgren J.S., Haas R., Johansson J.M. Monitoring coastal sea level using reflected GNSS signals. Adv. Space Res. 2011, vol. 47, no. 2, pp. 213-220. DOI:https://doi.org/10.1016/j.asr.2010.08.015.

30. Lukhnev A.V., San’kov V.A., Miroshnichenko A.I., Ashurkov S.V., Calais E. GPS rotation and strain rates in the Baikal-Mongolia region. Russian Geology and Geophysics. 2010, vol. 51, no. 7, pp. 785-793. DOI:https://doi.org/10.1016/j.rgg.2010.06.006.

31. Lukhneva O.F., Dembelov M.G., Lukhnev A.V. Determination of atmospheric water content from meteorological and GPS data. Geodinamika i tektonofizika [Geodynamics & Tectonophysics]. 2016, vol. 7, no. 4, pp. 545-553. DOI: 10.5800/ GT-2016-7-4-0222. (In Russian).

32. Mannucci A.J., Wilson B.D., Yuan D.N., Ho C.M., Lindqwister U.J., Runge T.F. A global mapping technique for GPS-derived ionospheric TEC measurements. Radio Sci. 1998, vol. 33, no. 3, pp. 565-582. DOI:https://doi.org/10.1029/97RS02707.

33. Mazzotti S., Dragert H., Henton J., Schmidt M., Hyndman R., James T., Lu Y., Craymer M. Current tectonics of northern Cascadia from a decade of GPS measurements. J. Geophys. Res. 2003, vol. 108, no. B12, 2554. DOI:https://doi.org/10.1029/2003JB002653.

34. Mitchell C.N., Spencer P.S.J. A three-dimensional time-dependent algorithm for ionospheric imaging using GPS. Ann. Geophys. 2003, vol. 46, no. 4, pp. 687-696. DOI:https://doi.org/10.4401/ag-4373.

35. Mitchell C.N., Alfonsi L., De Franceschi G., Lester M., Romano V., Wernik A.W. GPS TEC and scintillation measurements from the polar ionosphere during the October 2003 storm. Geophys Res Lett. 2005, vol. 32, L12S03. DOI: 10.1029/ 2004GL021644.

36. Nesterov I.A., Kunitsyn V.E. GNSS radio tomography of the ionosphere: The problem with essentially incomplete data. Adv. Space Res. 2011, vol. 47, no. 10, pp. 1789-1803. DOI: 10.1016/ j.asr.2010.11.034.

37. Nesterov I.A., Andreeva E.S., Padokhin A.M., Tumanova Yu.S., Nazarenko M.O. Ionospheric perturbation indices based on the low- and high-orbiting satellite radio tomography data. GPS Solutions. 2017, vol. 21, no. 4, pp. 1679-1694. DOI:https://doi.org/10.1007/s10291-017-0646-1.

38. Olemskoy S.V. Implementating the project «National Heliogeophysical Center of RAS» project development. Scientific report at Extended Meeting of SB RAS Presidium on December 21, 2017. Available from: https://www.sbras.ru/ files/files/prezidium20171221/1_olemskoy.pdf (accessed October 1, 2018). [In Russian].

39. Otsuka Y., Suzuki K., Nakagawa S., Nishioka M., Shiokawa K., Tsugawa T. GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys. 2013, vol. 31, no. 2, pp. 163-172. DOI:https://doi.org/10.5194/angeo-31-163-2013.

40. Ovodenko V.B., Trekin V.V., Korenkova N.A., Klimenko M.V. Investigating range error compensation in UHF radar through IRI-2007 real-time updating: Preliminary results. Adv. Space Res. 2015, vol. 56, no. 5, pp. 900-906. DOI:https://doi.org/10.1016/j.asr.2015.05.017.

41. Padokhin A.M., Kurbatov G.A., Andreeva E.S., Nesterov I.A., Nazarenko M.O., Berbeneva N.A., Karlysheva A.V. Estimation of sea level variations with GPS/GLONASS-reflectometry technique. Proc. of PIE. 2017, vol. 104667J: 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. DOI:https://doi.org/10.1117/12.2288741.

42. Perevalova N.P., Shestakov N.V., Voeykov S.V., Takahashi H., Guojie M. Ionospheric disturbances in the vicinity of the Chelyabinsk meteoroid explosive disruption as inferred from dense GPS observations. Geophys. Res. Lett. 2015, vol. 42, pp. 6535-6543. DOI:https://doi.org/10.1002/2015GL064792.

43. Pi X., Mannucci A.J., Lindqwister U.J., Ho C.M. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys. Res. Lett. 1997, vol. 24, pp. 2283−2286. DOI:https://doi.org/10.1029/97GL02273.

44. Priego E., Jones J., Porres M.J., Seco A. Monitoring water vapour with GNSS during a heavy rainfall event in the Spanish Mediterranean area, Geomatics. Natural Hazards and Risk. 2017, vol. 8, no. 2, pp. 282-294. DOI:https://doi.org/10.1080/19475 705.2016.1201150.

45. Ruffini G., Flores A., Rius A. GPS tomography of the ionospheric electron content with a correlation functional. IEEE Transactions on Geoscience and Remote Sensing. 1998, vol. 36, no. 1, pp. 143-153. DOI:https://doi.org/10.1109/36.655324.

46. Sankov V.A., Lukhnev A.V., Miroshnitchenko A.I., Dobrynina A.A., Ashurkov S.V., Byzov L.M., Dembelov M.G., Calais E., Déverchère J. Contemporary horizontal movements and seismicity of the south Baikal basin (Baikal rift system). Izvestiya, Physics of the Solid Earth. 2014, vol. 50, no. 6, pp. 785-794. DOI:https://doi.org/10.1134/S106935131406007X.

47. Segall P., Davis J.L. GPS applications for geodynamics and earthquake studies. Ann. Rev. Earth and Planetary Sci. 1997, vol. 25, pp. 301-336. DOI:https://doi.org/10.1146/annurev.earth.25.1.301.

48. Schaer S., Beutler G., Rothacher M. Mapping and predicting the ionosphere. Proc. IGS AC Workshop, Darmstadt, Germany, February 9-11, 1998, pp. 307-320.

49. Schunk R.W., Scherliess L., Sojka J.J., Thompson D. Global Assimilation of Ionospheric Measurements (GAIM). Radio Sci. 2004, vol. 39, RS1S02. DOI:https://doi.org/10.1029/2002RS002794.

50. Shanmugam S., Jones J., MacAulay A., van Dierendonck A.J. Evolution to Modernized GNSS Ionospheric Scintillation and TEC Monitoring. IEEE/ION PLANS 2012 - April 24-26, Myrtle Beach, SC, Session B2A. 2012. Available from: http://www.novatel.com/assets/Documents/Papers/PID2363033.pdf (accessed October 1, 2018).

51. Shestakov N.V., Gerasimenko M.D., Takahashi H., Kasahara M., Bormotov V.A., Bykov V.G., Kolomiets A.G., Gerasimov G.N., Vasilenko N.F., Prytkov A.S. Present tectonics of the southeast of Russia as seen from GPS observations. Geophys. J. International. 2011, vol. 184, no. 2, pp. 529-540. DOI:https://doi.org/10.1111/j.1365-246X.2010.04871.x.

52. Solomentsev D., Khattatov B., Codrescu M., Titov A., Yudin V., Khattatov V., Ionosphere state and parameter estimation using the Ensemble Square Root Filter and the global three-dimensional first-principle model. Space Weather. 2012, vol. 10, S07004. DOI:https://doi.org/10.1029/2012SW000777.

53. Sorokin A.A., Korolev S.P., Shestakov N.V., Malkovsky S.I., Tsoy G.I., Pupatenko V.V. Work administration with Global Navigation Satellite System data for complex study of modern geodynamic processes in the south of Far East of Russia. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current Problems in Remote Sensing of the Earth from Space]. 2017, vol. 14, no. 3, pp. 158-172. DOI:https://doi.org/10.21046/2070-7401-2017-14-3-158-172. (In Russian).

54. Tsugawa T., Nishioka M., Ishii M., Hozumi K., Saito S., Shinbori A., Otsuka Y., Saito A., Buhari S., Abdullah M., Supnithi P. Total Electron Content Observations by Dense Regional and Worldwide International Networks of GNSS. J. Disaster Res. 2018, vol. 13, no. 3, pp. 535-545. DOI:https://doi.org/10.20965/jdr.2018.p0535.

55. Voeykov S.V., Berngardt O.I., Shestakov N.V. Use of the index of TEC vertical variation disturbance in studying ionospheric effects of the Chelyabinsk meteorite. Geomagnetism and Aeronomy. 2016, vol. 56, no. 2, pp. 219-228. DOI: 10.1134/ S0016793216020122.

56. Yasyukevich Yu.V., Mylnikova A.A., Ivanov V.B. Estimating the absolute total electron content based on single-frequency satellite radio navigation GPS/GLONASS data. Solar-Terr. Phys. 2017a, vol. 3, no. 1, pp. 128-137. DOI:https://doi.org/10.12737/article_58 f972906c64a5.33470182.

57. Yasyukevich Yu.V., Ovodenko V.B., Mylnikova A.A., Zhivetiev I.V., Vesnin A.M., Edemskiy I.K., Kotova D.S. Methods of compensation of ionospheric component error of radio communication systems using GPS/GLONASS total electron content data. Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Ser. Radiotekhnicheskie i infokommunikatsionnye sistemy [Bull. of Volga State University of Technology. Ser. Radio Engineering and Infocommunication Systems]. 2017b, vol. 2, no. 34, pp. 19-31. DOI:https://doi.org/10.15350/2306-2819.2017.2.19. (In Russian).]

58. Yasyukevich Yu.V., Zhivetiev I.V., Kiselev A.V., Edemskiy I.K., Syrovatsky S.V., Shabalin A.S., Vesnin A.M. Tool for Creating Maps of GNSS Total Electron Content. Proc. Progress in Electromagnetics Research Symposium. Toyama, Japan, 1-4 August, 2018, 180330063056.

59. Yeh K.C., Liu C.H. Radio wave scintillation in the ionosphere. Proc. of IEEE. 1982, vol. 70, no. 4, pp. 324-360. DOI:https://doi.org/10.1109/PROC.1982.12313.

60. Zhou F., Dong D., Li W., Jiang X., Wickert J., Schuh H. GAMP: An open-source software of multi-GNSS precise point positioning using undifferenced and uncombined observations. GPS Solutions. 2018, vol. 22, 33. DOI:https://doi.org/10.1007/s10291-018-0699-9.

61. Zolesi B., Belehaki A., Tsagouri I., Cander Lj.R. Real-time updating of the Simplified Ionospheric Regional Model for operational applications. Radio Sci. 2004, vol. 39, no. 2. RS2011. DOI:https://doi.org/10.1029/2003RS002936.

62. URL: http://www.unavco.org (accessed October 1, 2018).

63. URL: ftp://terras.gsi.go.jp/data (accessed October 1, 2018).

64. URL: ftp://nfs.kasi.re.kr/gps/data/daily (accessed October 1, 2018).

65. URL: ftp://ftp.sonel.org/gps/data (accessed October 1, 2018).

66. URL: ftp://ftp.trignet.co.za (accessed October 1, 2018).

67. URL: https://hive.geosystems.aero (accessed October 1, 2018).

68. URL: http://smartnet-ru.com (accessed October 1, 2018).

69. URL: https://eft-cors.ru (accessed October 1, 2018).

70. URL: http://rtknet.ru (accessed October 1, 2018).

71. URL: https://simurg.iszf.irk.ru (accessed October 1, 2018).

72. URL: http://ckp-rf.ru/ckp/3056 (accessed October 1, 2018).

73. URL: http://omniweb.gsfc.nasa.gov (accessed October 1, 2018).

Login or Create
* Forgot password?