COMPARING THE MAIN OSCILLATION CHARACTERISTICS IN THE SOLAR CHROMOSPHERE AND MAGNETOSPHERE BASED ON STUDIES MADE IN ISTP SB RAS
Rubrics: REVIEWS
Abstract and keywords
Abstract (English):
The aim of this paper is to structure and extend the knowledge of solar chromospheric sources of oscillations in the solar wind and their relationships with pulsations registered in the magnetosphere. We compare the oscillation spectra that we observe using instruments of the Institute of Solar-Terrestrial Physics in different chromospheric structures with those observed in the solar wind and magnetosphere. We explore the possibility that the observed periodic variations of the chromospheric line widths can be interpreted as torsional Alfvén wave manifestation—this mode can propagate long distances without dissipating in the interplanetary space; it can penetrate into Earth’s magnetosphere directly or due to processes occurring at the plasmapause. We emphasize the similarities in the oscillation characteristics observed in different media, the similarities in the parameters of the media themselves and the processes developing in them. We believe that similar approaches can be applied to studying these media.

Keywords:
solar faculae, sunspots, MHD waves, magnetosphere
Text
Publication text (PDF): Read Download

ВВЕДЕНИЕ

Как известно, магнитогидродинамические (МГД) волны — один из механизмов переноса энергии в гелиосфере. Они наблюдаются во всех ее областях, от фотосферы до атмосферы Земли.

Во всех слоях солнечной атмосферы наблюдается богатое разнообразие периодов и МГД-мод. Для объектов различных типов накоплен огромный наблюдательный материал. В этой работе мы в основном используем наблюдаемые в верхней хромосфере волны, поскольку они имеют бо́льшую вероятность влияния на процессы в солнечном ветре (СВ), в отличие, например, от фотосферных колебаний, которые, как известно, в некоторых случаях могут быть запертыми в ограниченном диапазоне высот без возможности проникновения в верхнюю атмосферу.

Колебания в верхней атмосфере Земли и в магнитосфере изучаются также в течение продолжи-тельного времени. Среди механизмов, приводящих к генерации ультранизкочастотных (УНЧ) волн в магнитосфере Земли, одно из ключевых мест занимает впервые предложенный авторами работы [Гульельми, Троицкая, 1973] механизм прямого проникнове-ния волн из СВ через магнитопаузу [Mazur, 2010; Greenstadt et al., 1983]. В работах [Kessel, 2008; Takahashi, Ukhorskiy, 2007, 2008] колебания давления СВ рассматриваются как основной источник длиннопериодных пульсаций в магнитосфере.

Мы исследуем свойства колебаний, наблюдаемых в хромосфере и СВ с целью найти связь между ними. Эта работа основывается на наблюдательных результатах предыдущих исследований, выполненных в Институте солнечно-земной физики и касающихся геомагнитных колебаний, связанных с МГД-колебаниями в верхней хромосфере Солнца.

Мы делаем акцент на исследованиях, проведенных для ряда структур солнечной атмосферы в различных спектральных линиях, которые формируются в большом диапазоне высот.

Рассматриваются характеристики колебаний лучевой скорости, интенсивности и ширины профилей. Описания методов измерений можно найти в [Kobanov, 1985, 2001]. В этой работе мы анализиру-ем возможные проявления торсионных (крутильных) альфвеновских волн, характеризуемых вращательными движениями сегментов магнитной трубки. Альфвеновские волны могут распространяться на большие расстояния с минимальным рассеянием, проходя из хромосферы через корону в СВ и достигая Земли. С другой стороны, в работе [Cranmer, van Ballegooijen, 2005] показано, что переходная зона может отражать значительную часть альфвеновских волн в широком диапазоне периодов. Выше, в межпланетном пространстве отражение существенно только для периодов порядка десятков часов и больше. В наших предыдущих работах мы наблюдали периодические вариации ширины хромосферных линий, которые могут быть интерпретированы как проявления крутильных альфвеновских волн в разных структурах солнечной атмосферы. Следующий этап состоит в том, чтобы проследить динамику этих волн в СВ и магнитосфере Земли после того, как они были сгенерированы в хромосфере Солнца.

Ниже мы приводим краткое описание характеристик периодических колебаний на Солнце и в магнитосфере Земли, обнаруженных в наших наблюдательных данных.

References

1. Anfinogentov S.A., Nakariakov V.M., Nisticò G. Decayless low-amplitude kink oscillations: a common phenomenon in the solar corona? Astron. Astrophys. 2015, vol. 583, id. A136. DOI:https://doi.org/10.1051/0004-6361/201526195.

2. Anfinogentov S., Sych R., Prosovetsky D. Induced MHD oscillations of fine loop structures located in coronal hole. arXiv: 1011.4350, 11/2010. URL: https://arxiv.org/pdf/1011.4350.pdf (accessed September 8, 2018).

3. Chelpanov A., Kobanov N., Chupin S. Search for the observational manifestations of torsional Alfvén waves in solar faculae. Central European Astrophys. Bull. 2016a, vol. 40, pp. 29-34.

4. Chelpanov A.A., Kobanov N.I., Kolobov D.Yu. Characteristics of oscillations in magnetic knots of solar faculae. Astron. Rep. 2015, vol. 59, pp. 968-973.

5. Chelpanov, A.A., Kobanov N.I., Kolobov D.Yu. Influence of the magnetic field on oscillation spectra in solar faculae. Solar Phys. 2016b, vol. 291, pp. 3329-3338.

6. Cranmer S.R., van Ballegooijen A.A. On the generation, propagation, and reflection of Alfvén waves from the solar photosphere to the distant heliosphere. Astrophys. J. Supplement Ser. 2005, vol. 156, iss. 2, pp. 265-293.

7. de Pontieu B., McIntosh S., Martinez-Sykora J., Peter H., Pereira T.M.D. Why is nonthermal line broadening of spectral lines in the lower transition region of the Sun independent of spatial resolution? Astrophys. J. Lett. 2015, vol. 799, L12.

8. Dmitrienko I.S. Space-time structure of Alfvén resonant disturbances generated by transversally localized FMA wave. Geomagnetism and Aeronomy. 2010, vol. 50, iss. 8, pp. 1025-1034.

9. Dovbnya B.V., Potapov A.S. The frequency modulation of serpentine emission as compared to the set of the known periodicities of solar oscillations. Izvestiya, Physics of the Solid Earth. 2018, vol. 54. iss. 5, pp. 680-687. DOI:https://doi.org/10.1134/S1069 351318050051.

10. Greenstadt E.W., Mellott M.M., McPherron, Russell C.T., Singer H.J., Knecht D.J. Transfer of pulsation-related wave activity across the magnetopause - observations of corresponding spectra by ISEE-1 and ISEE-2. Geophys. Res. Lett. 1983, vol. 10, pp. 659-662.

11. Guglielmi A.V. The magnetosphere and interplanetary medium diagnostics from observation of geomagnetic pulsations: Report. Vsesoyuznyi seminar po fizike magnitosfery [The National Conference on Physics of the Magnetosphere]. Borok, 1972. (In Russian).

12. Guglielmi A.V., Dovbnya B.V. Hydromagnetic emission of interplanetary plasma. Pis’ma v ZhETF [Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki]. 1973, vol. 18, iss. 10, pp. 601-604. (In Russian).

13. Guglielmi A.V., Potapov A.S. On pecularities of MHD wave field in inhomogeneous plasma. Issledovaniya po geomagnetizmu, aeronomii i fizike Solnta [Res. on Geomagnetism, Aeronomy and Solar Phys.]. 1984, iss. 70, pp. 149-157. (In Russian).

14. Guglielmi A., Potapov A., Dovbnya B. Five-minute solar oscillations and ion-cyclotron waves in the solar wind. Solar Phys. 2015, vol. 290, iss. 10, pp. 3023-3032. DOI: 10.1007/ s11207-015-0772-2.

15. Guglielmi A. V., Troitskaya V.A. Geomagnitnye pulsatsii i diagnostika atmosfery [Geomagnetic Pulsations and the Atmosphere Diagnostics]. Moscow, Nauka Publ., 1973, 208 pp. (In Russian).

16. Hayes L.A., Gallagher P.T., McCauley, Dennis B.R, Ireland J., Inglis A. Pulsations in the Earth’s lower ionosphere synchronized with solar flare emission. J. Geophys. Res.: Space Phys. 2017, vol. 122. pp. 9841-9847.

17. Kepko L., Spence H.E., Singer H.J. ULF waves in the solar wind as direct drivers of magnetospheric pulsations. Geophys. Res. Lett. 2002, vol. 29, no. 8, pp. 39-1-39-4. DOI:https://doi.org/10.1029/2001 GL014405.

18. Kessel R.L. Solar wind excitation of Pc5 fluctuations in the magnetosphere and on the ground. J. Geophys. Res.: Space Phys. 2008, vol. 113, A04202.

19. Kobanov N.I. Narrowband spatial filtering in differential measurements of the line-of-sight velocity of the solar atmosphere. Astron. Astrophys. 1985. vol. 143. pp. 99-101.

20. Kobanov N.I. The properties of velocity oscillations in vicinities of sunspot penumbra. Solar Phys. 2000a, vol. 196, pp. 129-135.

21. Kobanov N.I. Properties of oscillations in sunspot penumbras. Astronomy Rep. 2000b, vol. 44, iss. 3, pp. 202-208.

22. Kobanov N.I. Measurement of the differential ray velocity and longitudinal magnetic field on the sun with CCD photodetectors: Part I. Modulationless method. Instruments and Experimental Techniques. 2001, vol. 44, pp. 524-529.

23. Kobanov N.I., Makarchik D.V., Sklyar A.A. Photospheric and chromospheric oscillations in the base of coronal holes. Solar Phys. 2003, vol. 217, pp. 53-67. DOI:https://doi.org/10.1023/A:10 27301101788.

24. Kobanov N.I., Pulyaev V.A. Photospheric and chromospheric oscillations in solar faculae. Solar Phys. 2007, vol. 246, pp. 273-279.

25. Kobanov N.I., Sklyar A.A. Periodic processes and plasma motions in solar coronal holes. Astron. Rep. 2007, vol. 51, pp. 773-779.

26. Kobanov N.I., Kustov A.S., Pulyaev V.A., Chupin S.A. The role of faculae in wave-energy transfer to upper layers of the solar atmosphere: Observations. Astron. Rep. 2011, vol. 55, pp. 532-540.

27. Kobanov N., Kolobov D., Kustov A., Chupin S., Chelpanov A. Direct measurement results of the time lag of LOS-velocity oscillations between two heights in solar faculae and sunspots. Solar Phys. 2013a, vol. 284, pp. 379-396.

28. Kobanov N.I., Chelpanov A.A., Kolobov D.Y. Oscillations above sunspots from the temperature minimum to the corona. Astron. Astrophys. 2013b, vol. 554, pp. A146.

29. Kobanov N., Kolobov D., Chelpanov A. Oscillations above sunspots and faculae: height stratification and relation to coronal fan structure. Solar Phys. 2015, vol. 290, pp. 363-380.

30. Kolobov D.Yu., Chelpanov A.A., Kobanov N.I. Peculiarity of the oscillation stratification in sunspot penumbrae. Solar Phys. 2016, vol. 291, pp. 3339-3347.

31. Lee L.C., Albano R.K., Kan J.R. Kelvin - Helmholtz instability in the magnetopause-boundary layer region. J. Geophys. Res.: Space Phys. 1981, vol. 86, no. A1, pp. 54-58. DOI:https://doi.org/10.1029/JA086iA01p00054.

32. Leonovich A., Mazur V., Kozlov D. MHD-waves in the geomagnetic tail: A review. Solnechno-zemnaya fizika [Solar-Terr. Phys.] 2015, vol. 1, no. 1, pp. 4-22. (In Russian).

33. Lipko Y.V., Pashinin A.Y., Rahkmatulin R.A. Ionospheric manifestations of geomagnetic pulsations at high latitudes. Eighth International Symposium on Atmospheric and Ocean Optics: Atmos. Phys. 2002, vol. 4678, pp. 485-490.

34. Mazur V.A. Resonance excitation of the magnetosphere by hydromagnetic waves incident from solar wind. Plasma Phys. Rep. 2010, vol. 36, pp. 953-963.

35. Mazur V.A., Leonovich A.S. ULF hydromagnetic oscillations with the discrete spectrum as eigenmodes of MHD-resonator in the near-Earth part of the plasma sheet. Ann. Geophys. 2006, vol. 24, pp. 1639-1648. DOI:https://doi.org/10.5047/eps.2012.07.006.

36. Mishin V.V. On the MHD instability of the Earth’s magnetopause and its geophysical effects. Planet. Space Sci. 1981, vol. 29, iss. 3, pp. 359-363.

37. Mishin V.V. Accelerated motions of the magneto-pause as a trigger of the Kelvin - Helmholtz insta-bility. J. Geophys. Res. 1993, vol. 98, no. A12, pp. 21365-21371.

38. Mishin V., Parkhomov V., Pashinin A. Geomagnetic pulsations caused by the magnetopause oscillations (comparison of spacecraft and geomagnetic observa-tions). Adv. Space Res. 2003, vol. 31, no. 5, pp. 1177-1182.

39. Mishin V.V., Tomozov V.M. Kelvin - Helmholtz instability in the solar atmosphere, solar wind and geomagnetosphere. Solar Phys. 2016, vol. 291, pp. 3165-3184. DOI:https://doi.org/10.1007/s11207-016-0891-4.

40. Nakariakov V.M., Verwichte E. Coronal waves and oscillations. Living Rev. Solar Phys. 2005, vol. 2, pp. 3. DOI: 10.12942/ lrsp-2005-3.

41. Nakariakov V.M., Anfinogentov S.A., Nisticò G., Lee D.-H. Undamped transverse oscillations of coronal loops as a self-oscillatory process. Astron. Astrophys. 2016a, vol. 591, id. L5. DOI:https://doi.org/10.1051/0004-6361/201628850.

42. Nakariakov V.M., Pilipenko V., Heilig B., Jelínek P., Karlický M., Klimushkin D.Y., Kolotkov D.Y., Lee D.-H., Nisticò G., van Doorsselaere T., Verth G., Zimovets .V.. Magnetohydrodynamic oscillations in the solar corona and Earth’s magnetosphere: towards consolidated understanding. Space Sci. Rev. 2016b, vol. 200, pp. 75-203.

43. Nosé M., Iyemori T., Sugiura M., Slavin J.A. A strong dawn/dusk asymmetry in Pc5 pulsation oc-currence observed by the DE-1 satellite. Geophys. Res. Lett. 1995, vol. 22, no. 15, pp. 2053-2056. DOI:https://doi.org/10.1029/95GL01794.

44. Olson J.V., Rostoker G. Longitudinal phase varia-tions of Pc4-5 micropulsations. J. Geophys. Res. 1978, vol. 83, pp. 2481-2488.

45. Potapov A.S., Mazur V.A. Pc3 pulsations: From the source in the upstream region to Alfvén resonances in the Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves. 1994, pp. 135-145. (Geophys. Monograph. Ser., vol. 81). DOI:https://doi.org/10.1029/GM081p0135.

46. Potapov A.S., Polyushkina T.N. Experimental evidence for direct penetration of ULF waves from the solar wind and their possible effect on acceleration of radiation belt electrons. Geomagnetism and Aerono-my. 2010, vol. 50, pp. 950-957.

47. Potapov A.S., Polyushkina T.N., Pulyaev V.A. Observations of ULF waves in the solar corona and in the solar wind at the Earth’s orbit. J. Atmos. Solar-Terr. Phys. 2013, vol. 102, pp. 235-242.

48. Rakhmatulin R.A. On a possibility of existence of two and more sources Pi2 pulsations in the magne-tosphere. International Association of Geomagnetism and Aeronomy IAGA-11. Scientific Assembly. Sopron (Hungary), 23-30 Aug 2009. P. 1212. Available from: http://www.iaga2009sopron.hu (accessed September 8, 2018).

49. Rakhmatulin R.A., Pashinin A.Y., Hayashi K. Observation of global Pi2 pulsations in mid-latitudes during auroral substorms. 5th International Confer-ence on Substorms. St. Petersburg, Russia, 16-20 May, 2000. Proc. Noordwijk. European Space Agency, ESA SP. 2000, vol. 443, pp. 561-564.

50. Shestov S.V., Nakariakov V.M., Ulyanov A.S., Reva A.A., Kuzin S.V. Nonlinear evolution of short-wavelength torsional Alfvén waves. Astrophys. J. 2017, vol. 840, iss. 2, id. 64. DOI:https://doi.org/10.3847/1538-4357/aa6c65.

51. Stephenson J.A.E., Walker A.D.M. HF radar observations of Pc5 ULF pulsations driven by the solar wind. Geophys. Res. Lett. 2002, vol. 29, no. 9, pp. 8-1-8-4. DOI:https://doi.org/10.1029/2001GL014291.

52. Sych R., Nakariakov V., Karlicky M., Anfinogentov S. Relationship between wave processes in sunspots and quasi-periodic pulsations in active region flares. Astron. Astrophys. 2009, vol. 505, iss. 2. pp. 791-799.

53. Sych R., Zaqarashvili T.V., Nakariakov V.M., Anfinogentov S.A., Shibasaki K., Yan Y. Frequency drifts of 3-min oscillations in microwave and EUV emission above sunspots. Astron. Astrophys. 2012, vol. 539, id. A23. DOI:https://doi.org/10.1051/0004-6361/201118271.

54. Takahashi K., Ukhorskiy A.Y. Solar wind control of Pc5 pulsation power at geosynchronous orbit. J. Geophys. Res.: Space Phys. 2007, vol. 112, no. A11, a11205. DOI: 10.1029/ 2007JA012483.

55. Takahashi K., Ukhorskiy A.Y. Timing analysis of the relationship between solar wind parameters and geosynchronous Pc5 amplitude. J. Geophys. Res.: Space Phys. 2008, vol. 113, no. A12), a12204. DOI:https://doi.org/10.1029/2008JA013327.

56. Troitskaya V.A., Plyasova-Bakunina T.A., Guglielmi A.V. Correlation between Pi2-4 pulsations and the interplanetary magnetic field. Doklady AN SSSR [Doklady AS USSR]. 1971, vol. 197, no. 6, pp. 1312-1314.

57. Viall N.M., Kepko L., Spence H.E. Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere. J. Geophys. Res.: Space Phys. 2009, vol. 114, no. A1, a01201. DOI:https://doi.org/10.1029/2008J A013334.

58. Wright A.N., Rickard G.J. ULF pulsations driven by magnetopause motions: Azimuthal phase characteristics. J. Geophys. Res.: Space Phys. 1995, vol. 100, no. A12, pp. 23703-23710. DOI:https://doi.org/10.1029/95JA01765.

59. Yumoto K. External and internal sources of low-frequency MHD waves in the magnetosphere. A. Review. J. Geomagnetism and Geoelectricity. 1988, vol. 40, iss. 3, pp. 293-311.

60. Zolotukhina N.A. Resonance properties of Psi5/Psc5 in geostationary orbit. Geomagnetism and Aeronomy. 2009, vol. 49, pp. 438-449.

61. Zolotukhina N.A. Polekh N.M., Rakhmatulin R.A., Kharchenko I.P. Geophysical effects of the interplanetary magnetic cloud on October 18-19, 1995 as deduced from observations at Irkutsk. J. Atmos. Solar-Terr. Phys. 2000, vol. 62, pp. 737-749.

62. Zubkova A.V., Kobanov N.I., Sklyar A.A., Kostyk R.I., Shchukina N.G. Periodic variations of the H-alpha profile width in the chromosphere of coronal holes as a possible indicator of Alfvén waves. Astron. Lett. 2014, vol. 40, pp. 222-229.

63. URL: http://ckp-rf.ru/ckp/3056 (accessed September 8, 2018).

Login or Create
* Forgot password?