The approximate closed-form solution to the problem on a circular multilayer (sandwich) constant-thickness plate bending on an elastic foundation with a complicated structure is obtained. The plate is bent under the axisymmetric distributed load, and the foundation reaction. The elastic foundation is a uniformly irregular in thickness layer (coating) based on a homogeneous half-space (substrate). Young’s modulus value at the interface of the coating and the substrate has a significant leap. Two different cases of the boundary conditions are considered for the plate: fixed and free edge conditions. The constructed approximate analytical solution to the problem is effective for a wide range of both geometric (the inhomogeneous layer thickness and the plate radius) and physical parameters (plate flexibility, and elastic properties of the coating and the substrate). The contact problem is reduced to the system of the integro-differential equation solution through the integral transformation method. The obtained formulas can be used for calculating the contact interaction characteristics between a multilayer plate and a foundation with a complex structure in various cases of the boundary conditions, and various loads applied to the plate.
inhomogeneous materials, sandwich plate, functionally-graded coating, axisymmetric problem, analytical methods, approximate analytical solution.
УДК 539.3
Осесимметричный изгиб круглой многослойной пластины на упругом основании сложной структуры[1]
С. М. Айзикович, С. С. Волков, А. В. Мелконян
Получено в аналитическом виде приближенное решение задачи об изгибе круглой многослойной пластины постоянной толщины, лежащей на упругом основании сложной структуры. Пластина изгибается под действием осесимметричной распределенной нагрузки и реакции со стороны основания. Упругое основание представляет собой непрерывно-неоднородный по толщине слой (покрытие), лежащий на однородном полупространстве (подложке). Модуль Юнга в зоне сопряжения покрытия и подложки имеет существенный скачок.Для пластины рассмотрены два случая граничных условий: условия закрепленного и свободного края. Построенное приближенное аналитическое решение задачи эффективно в широком диапазоне как геометрических параметров (толщина неоднородного слоя и радиус пластины), так и физических параметров (гибкость пластины и упругие свойства покрытия и подложки). Методом интегральных преобразований контактная задача сводится к решению системы интегро-дифференциальных уравнений. Полученные формулы могут быть использованы для расчета характеристик контактного взаимодействия многослойной пластины с основанием сложной структуры в зависимости от граничных условий ихарактера нагрузки на пластину.
[1] Результаты работы получены при выполнении проекта, поддержанного грантом РФФИ № 13-08-90916-мол_ин_нр
1. Hager, A.M., Davies, M. Short-Fibre Reinforced, High-Temperature Resistant Polymers for a Wide Field of Tribological Applications. In K. Friedrich, ed.: Advances in Composite Tribology, Amsterdam, 1993, pp. 107-157.
2. Friedrich, K., Reinicke, R., Zhang, Z. Wear of polymer composites. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2002, vol. 216, iss. 6, pp. 415-426.
3. Goryacheva, I.G., Myshkin, N.K., Torskaya, E.V., Kornev, Y.V., Gutsev, D.M., Kudritskiy, V.G., Kovaleva, I.N. Modelirovaniye friktsionnogo vzaimodeystviya kompozitsionnykh pokrytiy tribotekhnicheskogo naznacheniya. [Modeling friction of tribological composite coatings.] Journal of Friction and Wear, 2012, vol. 33, no. 6, pp. 407-414 (in Russian).
4. Vasilyev, A.S., Sadyrin, E.V., Vasilyeva, M.E. Krucheniye uprugogo poluprostranstva s mnogosloynym pokrytiyem periodicheskoy struktury. [Torsion of elastic half-space with multilayered coating of periodic structure.] Vestnik of Don State Technical University, 2013, no. 5-6, pp. 6-13 (in Russian).
5. Gorbunov-Posadov, M.I. Raschet balok i plit na uprugom poluprostranstve. [Calculation of beams and plates on an elastic half-space.] Prikladnaya matematika i mekhanika [Journal of Applied Mathematics and Mechanics], 1940, vol. 4, iss. 3, pp. 61-80 (in Russian).
6. Ishkova, A.G. Ob izgibe polosy i krugloy plastiny, lezhashchikh na uprugom poluprostranstve. [A strip and a circular plate bending on an elastic half-space.] Inzhenernyy sbornik, 1960, vol. 23, pp. 171-181 (in Russian).
7. Grebenschikov, V.N. Raschet krugloy plastinki na uprugom poluprostranstve [Calculation of circular plate on elastic half-space.] Teoriya rascheta i nadejnost’ priborov : sb. trudov II Saratovskoy obl. konf. mol. uchenyh [Theory of calculation and reliability of devices : Proc. II Young Scientists Conf.] Saratov, 1969, pp. 48-51 (in Russian).
8. Aleksandrov, V.M., Shatskikh, L.S. Universalnaya programma rascheta izgiba balochnyh plit na lineino-deformiruemom osnovanii. [Universal program for calculation of plate bending on linear deformable foundation.] Trudy 7 Vsesoyuznoi conferencii po teorii obolochek i plastinok. [Proc. VII All-Soviet Conference on Theory of Plates and Shells. Dnepropetrovsk, 1969.] Moscow, 1970, pp. 46-51 (in Russian).
9. Shatskikh, L.S. K raschetu izgiba plity na uprugom sloe. [About a plate bending on an elastic layer.] Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela [Mechanics of Solids], 1972, vol. 2, pp. 170-176 (in Russian).
10. Aleksandrov, V.M., Vorovich, I.I., Solodovnik, M.D. Effektivnoe reshenie zadachi o cilidricheskom izgibe plastinki konechnoy shiriny na uprugom poluprostranstve. [Effective solution of problems on cylindrical bending of plates of finite width on an elastic half-space.] Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela [Mechanics of Solids], 1973, vol. 4, pp. 129-138 (in Russian).
11. Aleksandrov, V.M., Solodovnik, M.D. Asymptotic problem of the cylindrical bending of a plate of finite breadth in an elastic half-space. Soviet Applied Mechanics, 1974, vol. 10, iss. 7, pp. 749-754 (in Russian).
12. Bosakov, S.V. K resheniyu kontaktnoy zadachi dlya krugloy plastinki. [The solution of the contact problem for a circular plate.] Journal of Applied Mathematics and Mechanics, 2008, vol. 72, no. 1, pp. 59-61 (in Russian).
13. Kashtalyan, M., Menshykova, M. Effect of a functionally graded interlayer on three-dimensional elastic deformation of coated plates subjected to transverse loading. Composite Structures, 2009, vol. 89, iss. 2, pp. 167-176.
14. Kashtalyan, M. Three-dimensional elasticity solution for bending of functionally graded rectangular plates. European Journal of Mechanics A/Solids, 2004, vol. 23, iss. 5, pp. 853-864.
15. Silva, A.R.D., Silveira, R.A.M., Goncalves, P.B. Numerical methods for analysis of plates on tensionless elastic foundations. International Journal of Solids and Structures, 2001, vol. 38, iss. 10-13, pp. 2083-2100.
16. Mitrin, B.I., Volkov, S.S. Raspredeleniye kontaktnykh napryazheniy pod krugloy plastinoy, lezhashchey na myagkom sloye. [Contact stress distribution under circular plate on a soft layer.] Vestnik of Don State Technical University, 2013, no. 5-6, pp. 14-24 (in Russian).
17. Aizikovich, S.M. Asimptoticheskoye resheniye odnogo klassa parnykh uravneniy. [An asymptotic solution of a class of coupled equations.] Journal of Applied Mathematics and Mechanics, 1990, vol. 54, iss. 5, pp. 719-724(in Russian).
18. Lourie, A.I. Teoriya uprugosti. [Theory of Elasticity.] Moscow, 1970, 824 p. (in Russian).
19. Belubekyan, M.V. K voprosu kolebaniy neodnorodnoy po tolshchine plastinki. [On the problem of vibration of the plate with nonuniform thickness.] Izvestiya natsionalnoy akademii nauk Armenii. Mekhanika.[Mechanics. Proceedings of National Academy of Sciences of Armenia], 2002, vol. 55, no. 3, pp. 34-41 (in Russian).
20. Tseitlin, A.I. Ob izgibe krugloy plity, lejaschey na lineyno-deformiruemom osnovanii. [Bending of a circular plate lying on a linearly deformable foundation.] Izvestiya AN SSSR. Mekhanika tverdogo tela. [Mechanics of Solids] 1969, vol. 1, pp. 99-112 (in Russian).
21. Aizkovich, S.М., Aleksandrov, V.M. Osesimmetricheskaya zadacha o vdavlivanii kruglogo shtampa v uprugoye, neodnorodnoye po glubine poluprostranstvo. [Axially symmetric problem of the indentation of a circular die into an elastic nonuniform in depth half-space.] Izvestiya AN SSSR. Mekhanika tverdogo tela. [Mechanics of Solids] 1984, vol. 19, iss. 2, pp. 73-82 (in Russian).
22. Aizikovich, S.M. Asimptoticheskoye resheniye zadachi o vzaimodeystvii plastiny s neodnorodnym po glubine osnovaniyem. [Asymptotic solution of the problem of the interaction of a plate with an inhomogeneous in depth foundation.] Prikladnaya matematika i mekhanika. [Journal of Applied Mathematics and Mechanics] 1995, vol. 59, iss. 4, pp. 661-669, (in Russian).