VISUALIZATION OF REGULAR POLYHEDRONS DURING THEIR FORMATION
Abstract and keywords
Abstract (English):
In this work the automated formation of surfaces correct to convex polyhedrons of Platon and two regular not convex star-shaped polyhedrons of Kepler-Poinsot by the kinematic method. Researches on realization of a goal were carried out in the environment of AutoCAD with use of the programs developed in the functional Autolisp programming language which is built in AutoCAD. The AutoLisp language and the AutoCAD environment are chosen for achievement of a goal as they allow showing bodies in the movement. The technique of formation of electronic models of the polyhedrons necessary for performance of visualization of polyhedrons is stated. The model is a set of compartments of a surface, issued in the form of the block. The user function in the AutoLisp language which identifier is team in the environment of AutoCAD is developed for each model. Each compartment was placed in the drawing layer which is taken away for it. When developing the user functions were taken into account to a possibility of the AutoCAD environment – the available teams for formation of surfaces. The user functions in the AutoLisp language for formation of the studied surfaces in the environment of AutoCAD are made by the defrosting method of the block containing surface compartments. In the course of "defrosting" of layers with compartments on the screen of the monitor process of formation of a surface is shown – drawings of compartments of a surface appear one by one. The last drawing is an image of a surface. The user functions in the AutoLisp language for formation of the studied surfaces in the environment of AutoCAD are made. The fragment of the program by training of one side of a tetrahedron is given Drawings of elements of surfaces of all regular polyhedrons of Platon and star-shaped polyhedrons of Kepler-Poinsot are provided in initial situation and in the course of stage-by-stage formation of these surfaces, the programs received in the environment of AutoCAD with use in the AutoLisp language. Drawings of elements of surfaces of all regular polyhedrons of Platon and star-shaped polyhedrons of Kepler-Poinsot are provided in initial situation and in the course of stage-by-stage formation of these surfaces, the programs received in the environment of AutoCAD with use in the AutoLisp language. The possibility of formation of surfaces of regular polyhedrons is shown by a kinematic method: the movement rectilinear forming on the directing lines as which edges of polyhedrons are used.

Keywords:
polyhedron, method, model, structural form, shaping, hexahedron, tetrahedron, octahedron, dodecahedron, icosahedron, the small stellated dodecahedron, great dodecahedron.
References

1. Varushkin V.P. Ispol'zovanie SAPR dlya kursovogo proektirovaniya [Using CAD for course design]. Geometriya i grafika [Geometry and Graphics]. 2014, V. 2, I. 3, pp. 38-42. DOI:https://doi.org/10.12737/5591. (in Russian)

2. Vennindzher M. Modeli mnogogrannikov [Models of polyhedra]. Moscow: «Mir» Publ., 1974. 389 p. (in Russian)

3. Dodekaedr - eto… Opredelenie, formuly, svoystva… [A dodecahedron is... Definition, formulas, properties …]. Available at: http://fb.ru/article/419653/dodekaedr-eto-opredelenie-formulyi-svoystva-i-istoriya (accessed 7 February 2019). (in Russian)

4. Ivanov V.N. Konstruktsionnye formy prostranstvennykh konstruktsiy. Vizualizatsiya poverkhnostey v sistemakh MathCad, AutoCad [Structural forms of spatial structures. Visualization of surfaces in the systems MathCad, AutoCad]. Moscow: ASV Publ., 2016. 412 p. (in Russian)

5. Ivanov V.N. Osnovy razrabotki i vizualizatsii ob"ektov analiticheskikh poverkhnostey i perspektivy ikh ispol'zovaniya v arkhitekture i stroitel'stve [Fundamentals of development and visualization of objects of analytical surfaces and the prospects for their use in architecture and construction]. Geometriya i grafika [Geometry and Graphics]. 2017, V. 5, I. 4, pp. 3-14. DOI:https://doi.org/10.12737/article_5a17f590be3f51.35734061. (in Russian)

6. Ivanov O.N. Yazyk programmirovaniya AutoLISP Release 10, 11 [Programming language AutoLISP Release 10, 11]. 1992. 186 p. (in Russian)

7. Krivoshapko S.N. Entsiklopediya analiticheskikh poverkhnostey [Encyclopedia of analytical surfaces]. Moscow: «Librokom» Publ., 2010. 556 p. (in Russian)

8. Kub. Formuly, priznaki i svoystva kuba [Cube. Formulas, signs and properties of the cube]. Available at: https://ru.onlinemschool.com/math/formula/cube/Kub (accessed 7 February 2019). (in Russian)

9. Kudryavtsev E.M. AutoLISP. Programmirovanie v FutoCAAD-14 [AutoLISP. Programming in FutoCAAD-14]. Moscow: DMK Publ., 1999. 132 p. (in Russian)

10. Matveev V.M. Vizualizatsiya obrashchennogo dvizheniya pri reshenii zadach mekhaniki graficheskimi metodami [Visualization of reversed motion in solving problems of mechanics by graphic methods]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Construction mechanics of engineering structures and structures]. 2016, I. 2, pp. 3-9. (in Russian)

11. Modelirovanie Platonovykh tel i zvezdchatykh mnogogrannikov [Modeling of Platonic solids and stellate polyhedra]. Available at: https://infourok.ru/modelirovanie-platonovih-tel-i-zvezdchatih-mnogogrannikov-1586026.html (accessed 7 February 2019). (in Russian)

12. Obrazovanie poverkhnostey mnogogrannikov [Formation of surfaces of polyhedra]. Available at: http://poznayka.org/s88963t1.html (accessed 7 February 2019). (in Russian)

13. Oktaedr [Octahedron]. Available at: https://mnogogranniki.ru/oktaedr.html (accessed 7 February 2019). (in Russian)

14. Os'kina G.N. Elektronnyy spravochnik [Electronic reference]. Trudy mezhdunarodnoy nauchno-prakticheskoy konferentsii «Inzhenernye sistemy - 2011», Moskva, 5-8 aprelya 2011 g. [Proceedings of the International Scientific and Practical Conference "Engineering Systems - 2011", Moscow, April 5-8, 2011]. Moscow: RUDN Publ., 2011, pp. 384-388. (in Russian)

15. Pravil'nyy mnogogrannik [The correct polyhedron]. Available at: http://ru.science.wikia.com/wiki/Pravil'nyy mnogogrannik (accessed 10 February 2019). (in Russian)

16. Pravil'nye mnogogranniki [Correct polyhedra]. Available at: http://www.loiro.ru/files/pages/page_241_1803.pdf (accessed 10 February 2019). (in Russian)

17. Romanova V.A. Vizualizatsiya dvizheniya tochki kontakta zub'ev v tsilindricheskoy zubchatoy peredache [Visualization of the movement of the point of contact of the teeth in spur gear]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Construction mechanics of engineering structures and structures]. 2016, I. 1, pp. 26-29. (in Russian)

18. Romanova V.A. Vizualizatsiya obrazovaniya poverkhnostey zontichnogo tipa [Visualization of formation of umbrellatype surfaces]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Construction mechanics of engineering structures and structures]. 2014, I. 3, pp. 19-22. (in Russian)

19. Romanova V.A. Osobennosti izobrazheniya protsessa obrazovaniya poverkhnostey v sisteme AutoCAD [Features of the image of the process of formation of surfaces in the AutoCAD system]. Stroitel'naya mekhanika inzhenernykh konstruktsiy i sooruzheniy [Building Mechanics of Engineering Structures and Structures]. 2012, I. 4, pp. 3-5. (in Russian)

20. Romanova V.A. Elektronnyy didakticheskiy material po teme «Obrazovanie kanonicheskikh poverkhnostey» [Electronic didactic material on the topic “Formation of canonical surfaces”]. Vestnik Rossiyskogo universiteta druzhby narodov. Inzhenernye issledovaniya [Bulletin of Peoples' Friendship University of Russia. Engineering research]. Moscow: RUDN Publ., 2013, I. 2, pp. 19-24. (in Russian)

21. Ryzhikov R.K. Vvedenie v AVTOLISP [Introduction to AVTOLISP]. Moscow: RUDN Publ., 2001. 64 p. (in Russian)

22. Sal'kov N.A. Geometricheskaya sostavlyayushchaya tekhnicheskikh innovatsiy [Geometrical component of technical innovations]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 2, pp. 85-93. DOI:https://doi.org/10.12737/article_5b55a-5163fa053.07622109. (in Russian)

23. Tetraedr [The tetrahedron]. Available at: http://ru.science.wikia.com/wiki/%D0%A2%D0%B5%D1%82%D1%80%D0%B0%D1%8D%D0%B4%D1%80 (accessed 10 February 2019). (in Russian)

24. Torkhova E.K. Mnogogrnniki [Polyhedrons]. Udmurdskiy gosudarstvennyy universitet. Institut grazhdanskoy zashchity. Kafedra obshcheinzhenernykh distsiplin [Udmurd State University. Institute of Civil Protection. Department of general engineering disciplines]. Izhevsk, 2012. 34 p. Available at: http://elibrary.udsu.ru/xmlui/bitstream/handle/123456789/10128/2012725.pdf?sequence=1 (accessed 7 February 2019). (in Russian)

25. Troitskiy D.I. Programmirovanie na AutoLisp [AutoLisp programming]. Tul'skiy gosudarstvennyy universitet [Tula State University]. Available at: http://www.cad.dp.ua/kurs/(accessed 10 February 2019). (in Russian)

26. Kharakh M.M. Konstruirovanie sborochnogo chertezha izdeliya metodom 3D-modelirovaniya kak zavershayushchiy etap izucheniya inzhenernoy i komp'yuternoy grfiki [Designing an assembly drawing of a product using 3D modeling as the final stage of studying engineering and computer graphics]. Geometriya i grafika [Geometry and Graphics]. 2014, V. 2, I. 3, pp. 34-37. DOI:https://doi.org/10.12737/5588. (in Russian)

27. Kheyfets A.L. Inzhenernaya 3D-komp'yuternaya grafika [Engineering 3D-computer graphics]. Moscow: «YuRAYT» Publ., 2013. 464 p. (in Russian)

28. Kheyfets A.L. Realizatsiya obobshchennoy teoremy Dandelena dlya proizvol'nykh kvadrik vrashcheniya v AutoCAD [Implementation of the generalized Dundelen theorem for arbitrary rotation quadrics in AutoCAD]. Geometriya i grafika [Geometry and Graphics]. 2014, V. 2, I. 2, pp. 9-14. DOI:https://doi.org/10.12737/5584. (in Russian)

29. Chetverukhin N.F. Kurs nachertatel'noy geometrii [The course of descriptive geometry]. Moscow: Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury Publ., 1936. 435 p. (in Russian)

Login or Create
* Forgot password?