Russian Federation
Geometric simulation and its software for estimating the efficiency of deployment of solar panels on spacecraft and solar concentrators on the ground are considered in this work. Both the physical and mathematical set up of the problem for estimating the energy efficiency of solar panels, taking into account their shading both by each other and by other elements of a space station has been described in this paper. It has been shown that the known methods for mechanization and automation of such calculations are focused on objects of relatively simple geometric shapes (such as buildings), and are inefficient for objects of complex and diverse geometric shape, characteristic both for spacecraft themselves and their solar panels. Therefore, to solve this problem, a receptor (voxel) geometric model digitizing the computational space has been chosen. The receptor model’s uniqueness is that comparing the values of receptor codes allows easy determine the intersection of objects. Has been described a developed receptor geometric model for estimating the effective area of solar panels, taking into account their shading when the object (for example, a spacecraft) is illuminated by a flow of solar energy from a given direction. The essential difference between the developed receptor geometric model and the classical one is that the former is multiform, i.e. uses not the 2-digit code (0 and 1), but the 4-digit one (0, 1, 2 and 3). Has been demonstrated a software implementation of the described geometric model in C#, and a graphical shell developed for this problem, allowing see the obtained results’ numerical values. Have been provided examples of its implementation in solving of practical problems. The results of verification for the described receptor geometric model have been demonstrated. All this allows speak about efficiency of using receptor geometric models both in singular computation calculations and for creating the appropriate algorithmic, mathematical support and software for the corresponding CAD systems.
geometric models, solar energy, spacecraft, solar panels, effective area, receptor geometric models, graphical shell.
1. Arkhitekturnaya fizika [Architectural physics]. Moscow, Stroyizdat Publ., 1998. 448 r. (in Russian)
2. Bakharev D.V. Metody rascheta i normirovaniya solnechnoy radiatsii v grado-stroitelstve. Kand. Diss. [Methods of calculation and regulation of solar radiation in urban planning. Cand. Diss.]. Moscow, 1968. 218 r. (in Russian)
3. Vermishev Y.K. Metody avtomatizirovannogo poiska resheniy pri proyektirovanii slozhnykh tekhnicheskikh sistem [Methods for automated search for solutions when designing complex technical systems]. Moscow, Radio i svyaz Publ., 1982. 152 r. (in Russian)
4. Vissarionov V.I., Deryugina G.V. Solnechnaya ehnergetika [Solar energy]. Moscow, MEHI Publ., 1996. 276 p. (in Russian)
5. Grigor'ev S.N., Loktev M.A., Tolok A.V. Postroenie voksel'nyh modelej geometricheskih ob"ektov [Construction of voxel models of geometric objects]. Prikladnaya Informatika [Applied Informatics], 2013, I. 4, pp. 50-55. (in Russian)
6. Zozulevich D.M., Maksimova L.G. Vypolneniye na ETsVM nekotorykh operatsiy s trekhmernymi kusochno-zadannymi obyektami [Performing on the digital computer some operations with three-dimensional piecewise-specified objects]. Vychislitelnaya tekhnika v mashinostroyenii [Computer engineering in mechanical engineering]. Minsk, NTK AN BSSR Publ., 1970, pp. 75-84. (in Russian)
7. Zozulevich D.M. Mashinnaya grafika v avtomatizirovannom proektirovanii [Computer graphics in computer-aided design]. Moscow, Mashinostroenie Publ., 1976. 240 p. (in Russian)
8. Ivannikova N.V. Geometricheskiye modeli. algoritmy proyektirovaniya i poiska effektivnykh parametrov reflektorov tekhnologicheskogo naznacheniya: avtoref. Kand. Diss. [Geometric models, algorithms for designing and searching for effective parameters of technological reflectors. Cand. Diss.]. Nizhniy Novgorod, NGGSA Publ., 2017. 19 p. (in Russian)
9. Karatayev V.A., Adonkina E.V., Ten M.G., Nefedova S.A. Insolyatsiya pomeshcheniy i territoriy [Insolation of premises and territories]. Novosibirsk, NGASU (Sibstrin) Publ., 2013. 64 p. (in Russian)
10. Korn G.V. Metody formirovaniya retseptornykh geometricheskikh modeley i ikh primeneniye pri reshenii inzhenerno-geometricheskikh zadach. Kand. Diss. [Methods of formation of receptor geometric models and their use in solving engineering and geometric problems. Cand. Diss.]. Moscow, MADI Publ. 1990. 22 p. (in Russian)
11. Kui Min Khan. Matematicheskoye i programmnoye obespecheniye rascheta zatenennosti solnechnykh batarey kosmicheskikh letatelnykh apparatov. Kand. Diss. [Mathematical and software for calculating the solar cells shade of spacecraft. Cand. Diss.]. Moscow, MAI Publ. 2018. 105 p. (in Russian)
12. Kui Min Khan, Markin L.V. Raschet vzaimnogo zateneniya solnechnykh antenn kosmicheskikh letatelnykh apparatov [Calculation of the mutual shading of spacecraft solar antennas]. Trudy MAI [Proceedings of MAI]. 2017, I. 93. Available at: http://trudy.mai.ru/published.php?ID=80474/ (accessed 28 January 2019). (in Russian)
13. Kuprikov M.Y., Markin L.V. Geometricheskiye aspekty avtomatizirovannoy komponovki letatelnykh apparatov [Geometric aspects of automated aircraft layout]. Geometriya i grafika [Geometry and graphics]. 2018, V. 18, I. 3, pp. 69-87. (in Russian)
14. Loktev M.A., Grigoryev S.N., Tolok A.V. Postroyeniye vokselnykh modeley geometricheskikh obyektov [Construction of voxel models of geometric objects]. Prikladnaya informatika [Applied informatics]. 2013, I. 4, pp. 50-56. (in Russian)
15. Markin L.V. Geometricheskiye modeli avtomatizirovannoy komponovki letatelnykh apparatov [Geometric models of the automated layout of aircraft]. Vestnik MAI [Bulletin of the MAI]. 2015, V. 22, I. 1, pp. 47-56. (in Russian)
16. Markin L.V. Geometricheskoye modelirovaniye zadach avtomatizatsii razmeshcheniya [Geometric modeling of location automation tasks]. Prikladnaya geometriya, inzhenernaya grafika, kompyuternyy dizayn [Applied geometry, engineering graphics, computer-aided design]. 2007, I. 1, rr. 9-18. (in Russian)
17. Markin L.V. O putyakh sozdaniya geometricheskikh modeley avtomatizirovannoy komponovki [About ways to create geometric models of automated layout]. Geometriya i grafika [Geometry and graphics]. 2015, V. 3, I. 1, pp. 64-69. (in Russian)
18. Markin L.V., Kui Min Khan, E Vin Tun, Korn G.V. Retseptornyye modeli v zadachakh avtomatizirovannoy komponovki tekhniki [Receptor models in the tasks of the automated layout of technology]. Saarbryuken Publ., Lambert Publ., 2016. 110 p. (in Russian)
19. Mkhitaryan E.M. Energetika netraditsionnykh i vozobnovlyayemykh istochnikov [Energy unconventional and renewable sources]. Kiyev, Nauk. Dumka Publ., 1999. 321 p. (in Russian)
20. Ni. N. Kh. Razrabotka i issledovaniye retseptornykh geometricheskikh modeley telesnoy trassirovki. Kand. Diss. [Development and research of receptor geometric models of solid tracing. Cand. Diss.]. Moscow, MAI Publ. 2014. 180 p. (in Russian)
21. Raykunov G.G., Melnikov V.M., Chebotarev A.S. Problemy sozdaniya kosmicheskikh solnechnykh elektrostantsiy (KSES) moshchnostyu 1-10 GVt. transliruyushchikh energiyu na Zemlyu [Problems of creating space solar power plants (CPS) with a capacity of 1-10 GW, transmitting energy to Earth]. Nauka i tekhnologii v promyshlennosti [Science and technology in industry]. 2011, I. 3, rr. 69-73. (in Russian)
22. Salkov N.A. Geometricheskoye modelirovaniye i nachertatelnaya geometriya [Geometric modeling and descriptive geometry]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, rr. 31-40. (in Russian)
23. Salkov N.A. Geometricheskaya sostavlyayushchaya tekhnicheskikh innovatsiy [The geometric component of technical innovation]. Geometriya i grafika [Geometry and graphics]. 2018, V. 18, I. 2, rr. 85-94. (in Russian)
24. Salkov N.A. Nachertatelnaya geometriya - baza dlya kompyuternoy grafiki [Descriptive geometry - the basis for computer graphics]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 2, rr. 37-47. (in Russian)
25. Samoylovskiy A.A., Liseytsev N.K. Metodika opredeleniya osnovnykh proyektnykh parametrov bespilotnykh letatelnykh apparatov. ispolzuyushchikh dlya poleta energiyu solnechnogo izlucheniya [Methods for determining the basic design parameters of unmanned aerial vehicles using solar radiation for flight]. Vestnik Moskovskogo aviatsionnogo instituta [Bulletin of the MAI]. 2015, V. 22, I. 3, rr. 7-16. (in Russian)
26. Silantyev D.A., Lotorevich E.A., Pushkarev S.A., Tolok A.V. Vokselno-matematicheskoye modelirovaniye pri reshenii zadach opredeleniya ploshchadi dlya poverkhnostey detaley [Voxel-mathematical modeling in solving problems of determining the area for surfaces of parts]. Informatsionnyye tekhnologii v proyektirovanii i proizvodstve [Information technologies in design and production]. 2013, I. 3, rr. 29-33. (in Russian)
27. Situ Lin. Razrabotka metodov i geometricheskikh modeley analiza nezapolnennykh prostranstv v zadachakh razmeshcheniya. Kand. Diss. [Development of methods and geometric models for the analysis of empty spaces in placement problems. Cand. Diss.]. Moscow, MAI Publ., 2011. 24 r. (in Russian)
28. Stoyan Y.G., Yakovlev S.V. Matematicheskiye modeli i optimizatsionnyye metody geometricheskogo proyektirovaniya [Mathematical models and optimization methods of geometric design]. Kiyev, Naukova dumka Publ., 1986. 266 r. (in Russian)
29. Sukhanov I.S. Luchistaya energiya solntsa i arkhitektura [Radiant Sun Power and Architecture]. Tashkent, Fan. 1973. 224 r.
30. Tolok A.V. Funktsionalno-vokselnyy metod v kompyuternom modelirovanii [Functional-voxel method in computer modeling]. Moscow, FIZMATLIT Publ., 2016. 112 r. (in Russian)
31. Kheyfets. A.L. Sistema avtomatizirovannogo rascheta prodolzhitelnosti insolyatsii [The system of automated calculation of the duration of insolation]. Vestnik Yuzhno-Uralskogo universiteta [Bulletin of the South Ural State University]. 2007, I. 14 (86), rr. 51-54. (in Russian)
32. Shteynberg A.Y. Raschet insolyatsii zdaniy [Calculation of insolation of buildings]. Moscow, Stroyizdat Publ., 1975. 117 r. (in Russian)