Russian Federation
The general solution of the free van der Pol equation is given.
free Van der Pol equation, nonlinear dynamical systems, the simplest systems with dynamical chaos
Классическое уравнение ван дер Поля [4] имеет следующий вид: хΧ-λ(1-х2)х+ω2х=0.
1. Kaplan, D. and Glass, L., Understanding Nonlinear Dynamics, Springer, 240-244, (1995).
2. Grimshaw, R., Nonlinear ordinary differential equations, CRC Press, 153-163, (1993), ISBN 0-8493-8607-1.
3. Supriya Mukherjee, Solution of the Duffing-van der Pol oscillator equation by a differential transform method, 2011 Phys. Scr. 83 015006.
4. Van der Rol V., "Phil. Mag.", 1922, ser. 6, v. 43, p. 700-19; 1926, ser. 7, v. 2, p. 978-92.
5. B. van der Pol, On “Relaxation Oscillations” I, Phil. Mag., 2 (1926), pp. 978-992.
6. Katok A.B., Khasselblat B. Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem = Introduction to the Modern Theory of Dynamical Systems / per. s angl. A. Kononenko pri uchastii S. Ferlegera. - M.: Faktorial, 1999. - S. 455. - 768 s. - ISBN 5-88688-042-9.
7. B. van der Pol, On “Relaxation Oscillations” I, Phil. Mag., 2 (1926), pp. 978-992.
8. Eckart, C.; Young, G. (1936). "The approximation of one matrix by another of lower rank". Psychometrika 1 (3): 211-8. doihttps://doi.org/10.1007/BF02288367.
9. B. van der Pol and J. van der Mark, “Frequency demultiplication”, Nature, 120 (1927), pp. 363-364.