Abstract and keywords
Abstract (English):
The general solution of the free van der Pol equation is given.

Keywords:
free Van der Pol equation, nonlinear dynamical systems, the simplest systems with dynamical chaos
Text

Классическое уравнение ван дер Поля [4] имеет следующий вид: хΧ-λ(1-х2)х+ω2х=0.

References

1. Kaplan, D. and Glass, L., Understanding Nonlinear Dynamics, Springer, 240-244, (1995).

2. Grimshaw, R., Nonlinear ordinary differential equations, CRC Press, 153-163, (1993), ISBN 0-8493-8607-1.

3. Supriya Mukherjee, Solution of the Duffing-van der Pol oscillator equation by a differential transform method, 2011 Phys. Scr. 83 015006.

4. Van der Rol V., "Phil. Mag.", 1922, ser. 6, v. 43, p. 700-19; 1926, ser. 7, v. 2, p. 978-92.

5. B. van der Pol, On “Relaxation Oscillations” I, Phil. Mag., 2 (1926), pp. 978-992.

6. Katok A.B., Khasselblat B. Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem = Introduction to the Modern Theory of Dynamical Systems / per. s angl. A. Kononenko pri uchastii S. Ferlegera. - M.: Faktorial, 1999. - S. 455. - 768 s. - ISBN 5-88688-042-9.

7. B. van der Pol, On “Relaxation Oscillations” I, Phil. Mag., 2 (1926), pp. 978-992.

8. Eckart, C.; Young, G. (1936). "The approximation of one matrix by another of lower rank". Psychometrika 1 (3): 211-8. doihttps://doi.org/10.1007/BF02288367.

9. B. van der Pol and J. van der Mark, “Frequency demultiplication”, Nature, 120 (1927), pp. 363-364.


Login or Create
* Forgot password?