MANIFESTATIONS OF TWO BRANCHES OF SOLAR ACTIVITY IN THE HELIOSPHERE AND GCR INTENSITY
Abstract and keywords
Abstract (English):
This paper provides insight into heliospheric processes and galactic cosmic ray (GCR) modulation occurring due to the presence of two branches of solar activity in this solar layer. According to the topology of solar magnetic fields, these branches are called toroidal (active regions, sunspots, flares, coronal mass ejections, etc.) and poloidal (high-latitude magnetic fields, polar coronal holes, zonal unipolar magnetic regions, etc.). The main cause of different manifestations of the two branches on the solar surface and in the heliosphere — the layer at the base of the heliosphere in which the main energetic factor is the magnetic field — is formulated. In this case, the magnetic fields of the poloidal branch, which have a larger scale but a lower intensity, gain an advantage in penetrating into the heliosphere. A connection is shown between the poloidal branch and the heliospheric characteristics (solar wind velocity field, size of the heliosphere, form of the heliospheric current sheet, regular heliospheric magnetic field and its fluctuations) that, according to modern notions, determine GCR propagation in the heliosphere.

Keywords:
galactic cosmic rays, heliosphere, GCR modulation, toroidal and poloidal branches of solar activity
Text
Text (PDF): Read Download
References

1. Ahluwalia H.S. Eleven year variation of cosmic ray intensity and solar polar field reversals. Proc. 16th ICRC. 1979, vol. 12, p. 182.

2. Altschuler M.D., Newkirk Jr.G. Magnetic fields and the structure of the solar corona. I. Methods of calculating coronal fields. Solar Phys. 1969, vol. 9, pp. 131-149. DOI: 10.1007/ BF00145734.

3. Arge C.N., Pizzo V.J. Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates. J. Geophys. Res. 2000, vol. 105, pp. 10465-10480. DOI:https://doi.org/10.1029/1999JA000262.

4. Balogh A., Jokipii J.R. The Heliospheric Magnetic Field and Its Extension to the Inner Heliosheath. Space Sci. Rev. 2009, vol. 143, pp. 85-110. DOI:https://doi.org/10.1007/s11214-008-9485-2.

5. Balogh A., Erdös G. The heliospheric magnetic field. Space Sci. Rev. 2013, vol. 176, iss. 1-4, pp. 177-215. DOI:https://doi.org/10.1007/s 11214-011-9835-3.

6. Balogh A., Hudson H., Petrovay K., von Steiger R. (eds.). Introduction to the solar activity cycle: overview of causes and consequences. Space Sci. Rev. 2014, vol. 186, iss. 1-4, pp. 1-15. DOI:https://doi.org/10.1007/s11214-014-0125-8.

7. Baranov V., Malama Y. Model of the solar wind interaction with the local interstellar medium: Numerical solution of self-consistent problem. J. Geophys. Res. 1993, vol. 98, pp. 5157-15163.

8. Bazilevskaya G.A., Krainev M.B., Makhmutov V.S., Fluckiger E.O., Sladkova A.I., Storini M. Structure of the maximum phase of the solar cycles 21 and 22. Solar Phys. 2000, vol. 197, no. 1, pp. 157-174. DOI:https://doi.org/10.1023/A:1026515520311.

9. Bilenko I.A. Determination of the coronal and interplanetary magnetic field strength and radial profiles from large-scale photospheric magnetic fields. Solar Phys. 2018, vol. 293, iss. 7, article id. 106, 24 p. DOI:https://doi.org/10.1007/s11207-018-1324-31.

10. Bilenko I.A., Tavastsherna K.S. Coronal hole and solar global magnetic field evolution in 1976-2012. Solar Phys. 2016, vol. 291, pp. 2329-2352. DOI:https://doi.org/10.1007/s11207-016-0966-2.

11. Bruzek A., Durrant C.J. (eds). Illustrated Glossary for Solar and Solar-Terrestrial Physics. Dordrecht, D. Reidel Publ. Co. Astrophysics and Space Science Library. 1977, vol. 69, 224 p. DOI:https://doi.org/10.1007/978-94-010-1245-4.

12. Charbonneau P. Dynamo models of the solar cycle. Living Rev. Solar Phys. 2010, vol. 7, p. 3.

13. Dorman L.I. Variatsii kosmicheskikh luchei [Variations of Cosmic Rays]. Gostekhizdat Publ., 1957. 492 p. (In Russian).

14. Forbush S.E. Variation with period of two solar cycles in the cosmic-ray diurnal anisotropy and the superposed variations correlated with magnetic activity. J. Geophys. Res. 1969, vol. 74, p. 3451.

15. Gerasimova S.K., Gololobov P.Yu., Grigoryev V.G., Krivoshapkin P.A., Krymsky G.F., Starodubtsev S.A. Heliospheric Modulation of Cosmic Rays: Model and Observation, Solar-Terrestrial Phys. 2017, vol. 3, iss. 1, pp. 78-102. DOI:https://doi.org/10.12737/article_58f970f2455545.93154609.

16. Gnevyshev M.N. On the 11-years cycle of solar activity. Solar Phys. 1967, vol. 1, p. 107.

17. Hathaway D.H. The solar cycle. Living Rev. Solar Phys. 2015, vol. 12, p. 4. DOI:https://doi.org/10.1007/lrsp-2015-4.

18. Hoeksema J.T. Structure and evolution of the large scale solar and heliospheric magnetic fields. Ph.D. Thesis, Stanford University, USA, 1984, 222 p.

19. Hundhausen A.J. Coronal Expansion and Solar Wind, Springer-Verlag Berlin Heidelberg New York, 1972, 238 p.

20. Jokipii J.R., Levy E.H., Hubbard W.B. Effects of particle drift on cosmic-ray transport. I. General properties, application to solar modulation. Astrophys. J. 1977, vol. 213, pp. 861-868. DOI:https://doi.org/10.1086/155218.

21. Kalinin M.S., Krainev M.B. The formation of the sunspot and magnetic cycles in the GCR intensity in the heliosphere. J. Phys.: Conf. Ser. 2013, vol. 409, iss. 1, article id. 012156. DOI:https://doi.org/10.1088/1742-6596/409/1/012156.

22. Krainev M.B. Heliospheric long-term variations of galactic cosmic ray intensity. Baikal Young Scientists’ International School on Fundamental Physics. XII Young Scientists’ Conference “Interaction of fields and radiation with matter”. Irkutsk, 2013, pp. 17-20. (In Russian).

23. Krainev M.B. Causes of long-term variations in galactic cosmic ray intensity in the inner heliosphere // Bulletin of the Russian Academy of Sciences: Physics Allerton Press Inc., 2017, vol. 81, no. 2, pp. 166-169. DOI:https://doi.org/10.3103/S1062873817020241.

24. Krainev M. On the method of the GCR partial intensities related to the main physical processes of solar modulation. J. Phys.: Conf. Ser. 2015, vol. 632, no. 1, DOI:https://doi.org/10.1088/1742-6596/632/1/012061.

25. Krainev M.B., Kalinin M.S. The models of the infinitely thin global heliospheric current sheet. Proc. 12th Intern. Solar Wind Conf. Saint-Mal, 2009. AIP Conf. Proc., 2010, vol. 1216, pp. 371-374.

26. Krainev M.B., Kalinin M.S. On the description of the 11- and 22-year cycles in the GCR intensity. J. Phys.: Conf. Ser. 2013a, vol. 409, iss. 1, article id. 012155. DOI:https://doi.org/10.1088/1742-6596/409/1/012155.

27. Krainev M.B., Kalinin M.S. On the GCR intensity and the inversion of the heliospheric magnetic field during the periods of the high solar activity. Proc. 33rd ICRC. Rio de Janeiro, Brasil, 2013b, icrc2013-0317/1-4, ArXiv:1411.7532 [astro-ph.SR], 2014.

28. Krainev M.B., Webber W.R. The solar cycle in the heliospheric parameters and galactic cosmic ray intensity. Multi-Wavelength Investigations of Solar Activity. Proc. IAU Symp. No. 223. A.V. Stepanov, E.E. Benevolenskaya, A.G. Kosovichev, eds. Cambridge University Press, 2004, pp. 81-84. DOI:https://doi.org/10.1017/S1743921304005150.

29. Krainev M.B., Bazilevskaya G.A., Gerasimova S.K., Krivoshapkin P.A., Krymsky G.F., Starodubtsev S.A., Stozhkov Yu.I., Svirzhevsky N.S. On the status of the sunspot and magnetic cycles in the galactic cosmic ray intensity. J. Phys.: Conf. Ser. 2013, vol. 409, iss. 1, DOI:https://doi.org/10.1088/1742-6596/409/1/012016.

30. Krainev M., Kota J., Potgieter M.S. On the causes and mechanisms of the long-term variations in the GCR characteristics. Proc. 34th International Cosmic Ray Conference (ICRC2015). 2015. The Hague, The Netherlands. Online at http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=236, id.176.

31. Krainev M.B., Bazilevskaya G.A., Kalinin M.S., Svirzhevsky N.S. On contribution of poloidal branch of solar activity to heliosphere and GCR modulation. IOP Conf. Series: J. Phys.: Conf. Ser. 2019, vol. 1181. 012010 IOP Publishing. DOI:https://doi.org/10.1088/1742-6596/1181/1/012010.

32. Krymskiy G.F. Diffusion mechanism of diurnal cosmic-ray variations, Geomagnetism and Aeronomy, 1964, vol. 4, no. 6, pp. 763-769.

33. Lazar M. (ed.). Exploring the Solar Wind. Croatia, InTech Publ., 2012, 474 p.

34. Mackay D.H., Yeates A.R. The Sun’s global photospheric and coronal magnetic fields: observations and models. Living Rev. Solar Phys. 2012, vol. 9, p. 6. DOI:https://doi.org/10.12942/lrsp-2012-6.

35. Ohl A.I. Forecast of sunspot maximum number of cycle 20. Solnechnye dannye [Solar Data], 1966, no. 12, p. 84. (In Russian).

36. Stozhkov Yu.I., Svirzhevsky N.S., Bazilevskaya G.A., Svirzhevskaya A.K., Kvashnin A.N., Krainev M.B., Makhmutov V.S., Klochkova T.I. Fluxes of cosmic rays in the maximum of absorption curve in the atmosphere and at the atmosphere boundary (1957-2007) // Preprint LPI 2007, no. 14, 77 p.

37. Owens M.J., Forsyth R.J. The heliospheric magnetic field. Living Rev. Solar Phys. 2013, vol. 10:5. DOI:https://doi.org/10.12942/lrsp-2013-5.

38. Parker E.N. The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 1965, vol. 13, pp. 9-49. DOI:https://doi.org/10.1016/0032-0633(65)90131-5.

39. Parker E.N., Kennel C.F., Lanzerotti L.J. (eds.). Solar system plasma physics, V. 1 Solar and solar wind plasma physics, Amsterdam, North-Holland Publishing Co. 1979, 391 p.

40. Potgieter M.S. Solar Modulation of Cosmic Rays. Living Rev. Solar Phys. 2013, 10:3. DOI:https://doi.org/10.12942/lrsp-2013-3.

41. Richardson J.G. Solar wind stream interaction regions throughout the heliosphere. Living Rev. Solar Phys. 2018, vol. 15:1. DOI:https://doi.org/10.1007/s41116-017-0011-z.

42. Rosenberg R.L., Coleman Paul J., Jr. Heliographic latitude dependence of the dominant polarity of the interplanetary magnetic field. J. Geophys. Res. 1969, vol. 74, no. 24, p. 5611. DOI:https://doi.org/10.1029/JA074i024p05611.

43. Rossi B., Olbert S. Introduction to the Physics of Space. New York, McGraw Hill Publ., 1970.

44. Schatten K.H. Current sheet magnetic model for the solar corona. Cosmic Electrodynamics. 1971, vol. 2, pp. 232-245.

45. Schatten K.H., Wilcox J.M., Ness N.F. A model of interplanetary and coronal magnetic fields. Solar Phys. 1969, vol. 6, pp. 442-455.

46. Shulz M. Interplanetary sector structure and the heliomagnetic equator. Astrophys. Space Sci. 1973, vol. 24, p. 371. DOI:https://doi.org/10.1007/BF02637162.

47. Smith E.J., Neugebauer M., Balough A., Bame S.J., Lepping R.P., Tsurutani B.T. Ulysses Observations of Latitude Gradients in the Heliospheric Magnetic Field: Radial Component and Variances. Adv. Space Res. 1995, vol. 72, iss. 9, pp. 165-170. DOI:https://doi.org/10.1016/0273-1177(95)00328-C.

48. Vainstein C.I., Zeldovich Ya.B., Ruzmaikin A.A. Turbulent Dynamo in Astrophysics, Moscow, Nauka, 1980, 354 p. (In Russian).

49. Wang Y.-M. Solar Cycle Variation of the Sun’s Low-Order Magnetic Multipoles: Heliospheric Consequences. Space Sci Rev. 2014, vol. 186, pp. 387-407. DOI:https://doi.org/10.1007/s11214-014-0051-9.

50. Wang Y.-M., Sheeley N.R., Jr. Solar wind speed and coronal flux-tube expansion. Astrophys. J. 1990, vol. 355, p. 726. DOI:https://doi.org/10.1086/168805.

51. Zhao X., Hoeksema J.T. A coronal magnetic field model with horizontal volume and sheet currents. Solar Phys. 1994, vol. 151, iss. 1, pp. 91-105. DOI:https://doi.org/10.1007/BF00654084.

52. URL: https://solarscience.msfc.nasa.gov (accessed February 6, 2019).

53. URL: http://wso.stanford.edu (accessed February 6, 2019).

54. URL: https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-imagery/composites/synoptic-maps/mc-intosh/ptmc _level3/ptmc_level3_gifs (accessed February 6, 2019).

55. URL: ftp://omniweb.gsfc.nasa.gov/pub/data/omni/low_ res_omni (accessed February 6, 2019).

56. URL: http://ufa.esac.esa.int/ufa/#data (accessed February 6, 2019).

57. URL: https://sites.lebedev.ru/en/DNS_FIAN (accessed February 6, 2019).

Login or Create
* Forgot password?