Moskva, Russian Federation
Sadovsky Institute of Geospheres Dynamics of RAS
Moskva, Russian Federation
Moscow, Moscow, Russian Federation
Moskva, Russian Federation
Moskva, Russian Federation
Moskva, Russian Federation
We review modern HF–X band radars covering over-the-horizon problems. The ionosphere significantly affects wave propagation in all the bands. We describe available correction techniques, which use additional evidence on the ionosphere, as well as models of different degrees of complexity. The fact that the field of view cannot be covered by ground-based instruments as well as the growing requirements to the precision and stability of the radars result in the impossibility of ionospheric correction with up-to-date models, hence the latter require further elaboration. We give a virtually full classification of the models. The article summarizes the requirements to the models for the radars depending on their function.
radar aids, ionospheric models
1. Agaryshev A.I. Opportunities for improving MUF forecasts when taking into account the influence of regular and random ionospheric heterogeneity. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa [Research on Geomagnetism, Aeronomy and Solar Physics]. 1995, iss. 103, pp. 186-193. (In Russian).
2. Akimov V.F., Kalinin Yu.K., Tasenko S.V. Odnoskachkovoe rasprostranenie radiovoln [Single-Hop Radio Wave Propagation]. Obninsk, FSBI “VNIIGMI-WDC”, 2014, 260 p. (In Russian).
3. Akimov V.F., Kalinin Yu.K. Vvedenie v proektirovanie ionosfernykh zagorizontnykh radiolokatorov [Introduction to the Design of Ionospheric Over-horizon Radars]. Moscow, Technosphere Publ., 2017, 491 p. (In Russian).
4. Aksenov O.Yu., Becker S.Z., Dyuzheva M.M., Kozlov S.I., Lyakhov A.N., Yakubovsky S.V. Substantiation of the need to develop and apply probabilistic-statistical models of the ionosphere in the interests of radar systems of missile defense. Sb. dokladov V Vserossiiskoi nauchno-tekhnicheskoi konferentsii «RTI Sistemy VKS-2017» [Book of Reports of the V All-Russian Scientific and Technical Conference “RTI Systems VKS-2017”]. May 25, 2017, Moscow, pp. 809-818. (In Russian).
5. Aksenov O.Yu., Veniaminov S.S., Yakubovsky S.V. Possibilities of the BMEWS radars for detecting space debris. Ekologicheskii vestnik. [Ecological Bull.]. 2017, no. 4, iss. 2, pp. 12-19. (In Russian).
6. Allen R., Donatelli D., Picardi M. Correction for ionospheric refraction for COBRA DANE. Air Force Surveys in Geophysics Air Force Geophysics Laboratory, Hanscom AFB, MA, 1977, AFGL-TR-77-0257, 18 p.
7. Bekker S.Z., Kozlov S.I., Lyakhov A.N. Issues of modeling the ionosphere for calculating the propagation of radio waves in solving applied problems. Voprosy oboronnoi tekhniki [Military Enginery]. Ser. 16. 2013, vol. 3-4, pp. 85-88. (In Russian).
8. Blagoveshchenskii D.V., Rogov D.D., Ulich T. Variations in the horizontal correlation radius of the ionosphere during a magnetospheric substorm. Geomagnetism and Aeronomy. 2013, vol. 53, no. 2, pp. 166-176. DOI: 10.1134/ S0016793213020035.
9. Boulch A., Cherrier N., Castaings T. Ionospheric activity prediction using convolutional recurrent neural networks. arXiv:1810.13273[cs.CV]. 2018. (accessed September 30, 2019).
10. Cander L.R. Artificial neural network application in ionosphere studies. Annals of Geophysics. 1998, vol. 5-6, pp. 757-766. DOI:https://doi.org/10.4401/ag-3817.
11. Chernov Yu.A. On the spatial correlation of the field of short waves with oblique reflection from the ionosphere. Izvestiya vuzov. Radiofizika [Radiophysics and Quantum Electronics]. 2002. vol. XLV, no. 5. pp. 932-402. (In Russian).
12. Dulong D.D. Reduction of the uncertainty of radar range correction. AFGL-TR-77-0125. 1977. URL: http://www.dtic. mil/docs/citations/ADA046166. (accessed September 30, 2019).
13. Ionosfernye vozmushcheniya i ikh vliyanie na radiosvyaz' [Ionospheric Disturbances and Their Impact on Radio Communications]. Moscow, Nauka Publ., 1971. 240 p. (In Russian).
14. Fabritsio D.A. Vysokochastotnyi zagorisontnyi radar: printsipy, obrabotka signalov, prakticheskoe primenenie [High-Frequency Over-the-Horizon Radar: Fundamental Principles, Signal Processing and Practical Application]. Moscow, Tekhnosfera Publ., 2018. 935 p. (In Russian). (English edition: Fabrizio G.A. High-Frequency Over-the-Horizon Radar: Fundamental Principles, Signal Processing and Practical Application. New York, McGraw-Hill, 2013, 944 p.).
15. Fizika yadernogo vzryva [Physics of a Nuclear Explosion]. Moscow, Nauka Publ., Fizmatgiz Publ., 1997, vol. 1, 528 p.; vol. 2, 256 p. (In Russian).
16. Golovin O.V., Prostov S.P. Sistemy i ustroistva korotkovolnovoi radiosvyazi [Systems and Devices for Short-Wave Radio Communications]. Moscow, Goryachaya Liniya - Telecom Publ., 2006, 354 p. (In Russian).
17. Haykin S. Neural Networks: A Comprehensive Foundation. New York, Macmillan College Publishing Company, 1994, 696 p.
18. Huang Z., Yuan H. Ionospheric single-station TEC short-term forecast using RBF neural network. Radio Sci. 2014, vol. 49, pp. 283-292. DOI:https://doi.org/10.1002/2013RS005247
19. Hunt S.M., Close S., Coster A.J., Stevens E., Schuett L.M., Vardaro A. Equatorial atmospheric and ionospheric modeling at Kwajalein Missile Range. Lincoln Laboratory Journal. 2000, vol. 12, no. 1, pp. 45-64.
20. Karachevtsev A.M. Main atmospheric and astrophysical factors determining time and coordinates measurement accuracy of space surveillance system. Ways to achieve desired accuracy. Uspekhi sovremennoi radioelektroniki [Telecommunications and Radio Engineering]. 2012, no. 2, pp. 34-38. (In Russian).
21. Kolosov M.A., Armand N.A., Yakovlev O.I. Rasprostranenie radiovoln pri kosmicheskoi svyazi [Propagation of Radio Waves in Space Communications]. Moscow, Svyaz Publ., 1969, 156 p. (In Russian).
22. Kontseptualnye podkhody k organizatsii vozdushno-kosmicheskoi oborony obyektov strategicheskikh yadernykh sil [Conceptual Approaches to the Organization of Aerospace Defense of Strategic Nuclear Forces]. Tver, PolyPress Publ., 2017, 88 p. (In Russian).
23. Kozlov S.I., Smirnova N.V. Methods and means of creating artificial formations in the near-Earth environment and estimation of characteristics of emerging disturbances. I. Methods and means of creating artificial disturbances. Kosmicheskie issledovaniya [Cosmic Res.]. 1992a, vol. 30, no. 4, pp. 495-523. (In Russian).
24. Kozlov S.I., Smirnova N.V. Methods and means of creating artificial formations in the near-Earth environment and estimation of characteristics of emerging disturbances. II. Estimation of characteristics of artificial disturbances. Kosmicheskie issledovaniya [Cosmic Res.]. 1992b, vol. 30, no. 5. pp. 629-683. (In Russian).
25. Kozlov S.I., Vlaskov V.A., Smirnova N.V. Specialized aeronomy model for studying the artificial modification of the middle atmosphere and lower ionosphere. I. Requirements for the model and basic principles of its construction. Kosmicheskie issledovaniya [Cosmic Res.]. 1988, vol. 26, no. 3, pp. 738-745. (In Russian).
26. Kozlov S.I., Vlaskov V.A., Smirnova N.V. Specialized aeronomy model for studying the artificial modification of the middle atmosphere and lower ionosphere. II. Comparison of calculation results with experimental data. Kosmicheskie issledovaniya [Cosmic Res.]. 1990, vol. 28, no. 1, pp. 77-84. (In Russian).
27. Kozlov S.I., Lyakhov A.N., Bekker S.Z. Key principles of constructing probabilistic statistical ionosphere models for the radio wave propagation problems. Geomagnetism and Aeronomy. 2014. vol. 54, no. 6, pp. 750-762. DOI:https://doi.org/10.1134/S0016793214060127.
28. Kozlov S.I., Lyakhov A.N., Yakubovsky S.V., Bekker S.Z., Gavrilov B.G., Yakim V.V. Justification of requirements for ionosphere models used in decimeter and meter wavelength radar systems. Sb. dokladov V Vserossiiskoi nauchno-prakticheskoi konferentsii «Problemy voennoi geofiziki i kontrolya sostoyaniya prirodnoi sredy» [Book of Reports of the V All-Russia Scientific and Practical Conference “Problems of Military Geophysics and Environmental Monitoring”]. May 23-25, 2018. St. Petersburg, pp. 455-457. (In Russian).
29. Kunitsyn V.E., Padokhin A.M. Determining the intensity of solar flare ionizing radiation from data of the GPS/GLONASS navigation systems. Moscow University Physics Bulletin. 2007, vol. 62, iss. 5, pp. 334-337. DOI:https://doi.org/10.3103/S0027134907050165.
30. Kuriksha A.A., Lipkin A.L. Study of the effectiveness of using the IRI model to correct the radar measurements of satellite coordinates. Elektromagnitnye volny i elektronnye sistemy [Electromagnetic Waves and Electronic Systems]. 2013, vol. 18, no. 5, pp. 21-26. (In Russian).
31. Liu D.-D., Yu Tao, Wang J.-S., Huang C., Wan W.-X. Using the radial basis function neural network to predict ionospheric critical frequency of F2 layer over Wuhan. Adv. Space Res. 2009, vol. 43, iss. 11, pp. 1780-1785. DOI:https://doi.org/10.1016/j.asr.2008.05.015.
32. Lyakhov A.N., Kozlov S.I., Bekker S.Z. Assessment of the accuracy of calculations using the International Reference Ionosphere Model IRI-2016: I. Electron densities. Geomagnetism and Aeronomy. 2019. vol. 59, no. 1, pp. 45-52. DOI:https://doi.org/10.1134/S0016793219010110.
33. Nakamura M.I., Maruyama T., Shidama Y. Using a neural network to make operational forecasts of ionospheric variations and storms at Kokubunji, Japan. J. National Inst. Infor. Com. Tech. 2009, vol. 56, no. 1-4, pp. 391-406.
34. Moshchnye nadgorizontnye RLS dalnego obnaruzheniya. Razrabotka. Ispytaniya. Funktsionirovanie [Powerful Over-the-Horizon Early Warning Radars. Development. Tests. Functioning]. Moscow, Radiotekhnika Publ., 2013, 168 p. (In Russian).
35. Pronin V.E., Pilipenko V.A., Zakharov V.I., Murr D.L., Martines-Bedenko V.A. The response of the full electronic content of the ionosphere to convective vortices. Kosmicheskie issledovaniya [Cosmic Res.]. 2019, vol. 57, no. 2, pp. 1-10. (In Russian).
36. Rekomendatsii Mezhdunarodnogo soyuza elektrosvyazi [Recommendations of the International Telecommunication Union]. RP.531-10. Geneva, 2010, p. 2. (In Russian).
37. Ryabova N.V. Zondirovaniye estestvennoi i iskusstvenno-vozmushchennoi ionosfery lineino-chastotno-modulirovannym signalom. Dis. … kand. fiz.-mat. nauk [Sounding of a Natural and Artificially Disturbed Ionosphere with a Linear Frequency-Modulated Signal. Thesis for the degree of Sandidate of Physical and Mathematical Sciences]. Kazan, 1994. 172 p. (In Russian).
38. Ryabova N.V. Radiomonitoring i prognozirovanie pomekhoustoichivykh dekametrovykh radiokanalov. Dis. … dokt. fiz.-mat. nauk [Radio Monitoring and Prediction of Noise-Resistant Decameter Radio Channels. Thesis for the degree of Doctor of Physical and Mathematical Sciences.]. Yoshkar-Ola, 2004. 349 p. (In Russian).
39. Ryabova N.V., Ivanov V.A., Uryadov V.P., Shumaev V.V. Prediction and extrapolation of the parameters of the HF radio channel according to oblique sounding of the ionosphere. Radiotekhnika [Radio Engineering]. 1997, no. 7, pp. 28-30. (In Russian).
40. Shpynev B.G., Chernigovskaya M.A., Kurkin V.I., Ratovsky K.G., Belinskaya Yu.A., Stepanov A.E., et al. Spatial variations of the ionosphere parameters over the Northern Hemisphere winter jet streams. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. [Current problems in remote sensing of the Earth from space]. 2016, vol. 13, no. 4, pp. 204-215. DOI:https://doi.org/10.21046/2070-7401-2016-13-4-204-215. (In Russian).
41. Sokolov K.S., Trekin V.V., Ovodenko V.B., Patronova E.S. The method of operational accounting of the influence of the environment on trajectory measurements. Uspekhi sovremennoi radioelektroniki [Telecommunications and Radio Engineering]. 2012, no. 2, pp. 17-21. (In Russian).
42. Shchit Rossii. Sistemy protivoraketnoi oborony. [Shield of Russia. Missile Defense Systems]. Moscow, N.E. Bauman MSTU Publ., 2009. 502 p. (In Russian).
43. Wintoft P., Cander L.R. Ionospheric foF2 storm forecasting using neural networks. Physics and Chemistry of the Earth. Part C: Solar. Terrestial & Planetary Science. 2000, vol. 25, iss. 4, pp. 267-273. DOI:https://doi.org/10.1016/S1464-1917(00)00015-5.
44. Yakim V.V., Bekker S.Z., Kozlov S.I., Lyakhov A.N. Comparison of the calculation results according to the IRI-2016 model and the ionosphere model, presented as the new state standard of Russia (GOST 25645.146). Preliminary results. Tezisy dokladov na 14 ezhegodnoi konferentsii «Fizika plazmy v solnechnoi sisteme» [Abstracts at the 14th Annual Conference “Plasma Physics in the Solar System”]. February 11-15, 2019, p. 132. (In Russian).
45. Yasyukevich Yu.V., Astafyeva E.I., Zhivyev I.V., Maksikov A.P. Global distribution of GPS losses of phase lock and total electron content slips during 2005 May 15 and 2003 November 20 magnetic storms. Solnechno-zemnaya fizika [Solar-Terrestrial Physics]. 2015, vol. 1, no. 4, pp. 58-65. (In Russian). DOI:https://doi.org/10.12737/13459.
46. URL: https://en.wikipedia.org/wiki/Solid_State_Phased_ Array_Radar_System (accessed September 30, 2019).