UDK 31 Статистика. Демография. Социология
GRNTI 27.01 Общие вопросы математики
OKSO 44.06.01 Образование и педагогические науки
BBK 7426 Методика преподавания учебных предметов в общеобразовательной школе
BISAC EDU029000 Teaching Methods & Materials / General
The example of real problems of the final stage of the 2019 Republican Mathematics Olympiad in the Kyrgyz Republic shows the methods of solution and criteria for a 10-point assessment of each problem. The final stage of the mathematics Olympiad was held in two rounds on March 30-31, 2019. The set of tasks for each round contained three tasks, one of them of geometric content. Thus, a total of 6 problems were proposed to the participants of the Olympiad, 2 of them in geometry and 1 in combinatorics. In the final stage, 318 winners of the previous stage took part, competing in 10 school subjects. In the individual event, 73 students became winners of the Olympiad, i.e. 3.57% of the number of all participants, starting from the regional stage. An increase in the number of winners from the regional regions of Kyrgyzstan was noted.
Republican olympiad, mathematics, schoolchild, olympiad problem, assessment criteria
1. Vyshnepol'skij V.I. Funkcii olimpiad // Geometriya i grafika. 2013. №. 3. S. 44-47. DOI: https://doi.org/10.12737/2133.
2. Kajgorodceva N.V. Geometriya, geometricheskoe myshlenie i geometro-graficheskoe obrazovanie // Sovremennye problemy nauki i obrazovaniya. 2014. № 2. URL: http://science-education.ru/ru/article/ view?id=12330
3. Sajt Regional'nyj nauchno-prakticheskij centr «Қostanaj Daryny». Metodicheskie rekomendacii k provedeniyu olimpiady [Elektronnyj resurs]. URL: http://kostdaryny.web-box.ru/trening.html
4. Sal'kov N.A., Vyshnepol'skij V.I., Aristov V.M., Kulikov V.P. Olimpiady po nachertatel'noj geometrii kak katalizator evristicheskogo myshleniya// Geometriya i grafika. 2017. T. 5. № 2. S. 93-101. DOI:https://doi.org/10.12737/article_ 5953f3767b1e80.12067677.
5. Fedorov R.M., Kanel'-Belov A.Ya., Koval'dzhi A.K., Yashchenko I.V. Moskovskie matematicheskie olimpiady 1993-2005 gg. / Pod red. V.M. Tihomirova. Moskva: MCNMO, 2006. 456 s.
6. Hang K.H., Wang H. Solving problems in geometry. Insights and strategies for mathematical olympiad and competitions. World scientific publishing comp. Mathematical olympiad series. 2017. Vol. 10. 369 p.
7. Mashkoor A., Kossak F., Egyed A. Evaluating the suitability of state-based formal methods for industrial deployment//Software - Practice and Experience. 2018. S. 2350-2379.
8. Soberón P. Problem-Solving Methods in Combinatorics: An Approach to Olympiad Problems. Birkhäuser, 2013. 190 p.
9. IV etap Respublikanskoj olimpiady. Matematika. 1 den' [Elektronnyj resurs]. URL: http://www.testing.kg/media/uploads/files/olimpiada/2019/math_task_1.pdf
10. IV etap Respublikanskoj olimpiady. Matematika. 2 den' [Elektronnyj resurs]. URL: http://www.testing.kg/media/uploads/ files/olimpiada/2019/math_task_2.pdf