GOLDEN SECTION AND GOLDEN RECTANGLES WHEN BUILDING ICOSAHEDRON, DODECAHEDRON AND ARCHIMEDEAN SOLIDS BASED ON THEM
Abstract and keywords
Abstract (English):
A brief history of the development of the regular polyhedrons theory is given. The work introduces the reader to modelling of the two most complex regular polyhedrons – Platonic solids: icosahedron and dodecahedron, in AutoCAD package. It is suggested to apply the method of the icosahedron and dodecahedron building using rectangles with their sides’ ratio like in the golden section, having taken the icosahedron’s golden rectangles as a basis. This method is well-known-of and is used for icosahedron, but is extremely rarely applied to dodecahedron, as in the available literature it is suggested to build the latter one as a figure dual to icosahedron. The work provides information on the first mentioning of this building method by an Italian mathematician L. Pacioli in his Divine Proportion book. In 1937, a Soviet mathematician D.I. Perepelkin published a paper On One Building Case of the Regular Icosahedron and Regular Dodecahedron, where he noted that this “method is not very well known of” and provided a building based “solely on dividing an intercept in the golden section ratio”. Taking into account the simplicity and good visualization of the building based on golden rectangles, a computer modeling of icosahedron and dodecahedron inscribed in a regular hexahedron is performed in the article. Given that, if we think in terms of the golden section concepts, the bigger side of the rectangle equals a whole intercept – side of the regular hexahedron, and the smaller sides of the icosahedron and dodecahedron rectangles are calculated as parts of the golden section ratio (of the bigger part and the smaller one, respectively). It is demonstrated how, using the scheme of a wireframe image of the dual connection of these polyhedrons as a basis, to calculate the sides of the rectangles in the golden section ratio in order to build an “infinite” cascade of these dual figures, as well as to build the icosahedron and dodecahedron circumscribed about the regular hexahedron. The method based on using the golden-section rectangles is also applied to building semiregular polyhedrons – Archimedean solids: a truncated icosahedron, truncated dodecahedron, icosidodecahedron, rhombicosidodecahedron, and rhombitruncated icosidodecahedron, which are based on icosahedron and dodecahedron.

Keywords:
golden section, golden rectangle, icosahedron, dodecahedron, Platonic solids, Archimedean solids, AutoCAD
References

1. Adamar Zh. Elementarnaya geometriya. Stereometriya [Elementary geometry. Stereometry]. Moscow, Uchpedgiz Publ., 1951, 760 p. (in Russian)

2. Aleksandrov A.D. Vypuklyye mnogogranniki [Convex polyhedra]. Moscow, Leningrad: Gostekhizdat Publ., 1950, 428 p. (in Russian)

3. Al'sina K. Tysyacha granei geometricheskoi krasoty. Mnogogranniki [Thousand Faces of Geometrical Beauty. Polyhedrons]. Moscow, De Agostini Publ., 2014, 144 p. (in Russian)

4. Ashkinuze V.G. O chisle polupravilnykh mnogogrannikov [By the number of semi-correct polyhedra]. Matematicheskoye prosveshcheniye [Mathematical Enlightenment]. 1957, I. 1, pp. 107-118. (in Russian)

5. Bezdetko P.V., Krasnjuk A.V., Malij A.D., Bocharova N.P Prostranstvennoe modelirovanie tverdotel'nykh pravil'nykh mnogogrannikov (tel Platona) v sisteme AutoCAD [Spatial modeling of solid-state regular polyhedra (solids of Platon) in AUTOcad system]. Nauka i progress transporta. Vestnik Dnepropetrovskogo natsional'nogo universiteta zheleznodorozhnogo transporta [Science and transport progress. Bulletin of the Dnipropetrovsk National University of Railway Transport]. 2009, I. 27, 4 p. (in Russian)

6. Bolshakov V.P., Chagina A.V. Testovyye zadaniya po osnovam trekhmernogo modelirovaniya [Test Tasks on Bases of 3D-Modelling]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 4, pp. 60-68. DOI:https://doi.org/10.12737/22844 (in Russian)

7. Gangnus R.V., Gurvits Yu.O. Geometriya. Stereometriya [Geometry. Stereometry]. Moscow, Uchpedgiz Publ., 1935, pp. 187-190. (in Russian)

8. Gardner M. Matematicheskie golovolomki i razvlecheniya [Mathematical Puzzles and Games]. Moscow, Mir Publ., 1971, 511 p. (in Russian)

9. Gilbert D., Kon-Fossen S. Naglyadnaya geometriya [Visual geometry]. Moscow, Leningrad, Obyedinennoye nauchno-tekhnicheskoye izdatelstvo NKTP SSSR. Glavnaya redaktsiya obshchetekhnich. literatury i nomografii. 1936, 302 p. (in Russian)

10. Dolbilin N.P. Tri teoremy o vypuklykh mnogogrannikakh [Three theorems on convex polyhedra]. Kvant [Kvant], 2001, I. 5, 6, pp. 7-12. (in Russian)

11. Dolbilin N.P., Kanel' A.Ya. Garmoniya pravil'nykh mnogogrannikov. Matematicheskie etyudy [Harmony of Regular Polygons. Mathematical Sketches]. Available at: http://www.etudes.ru/ru/etudes/platonic-solids-harmony/ (accessed 03 April 2019). (in Russian)

12. Ertskina E.B., Korolkova N.N. O formirovanii graficheskoy kultury budushchikh inzhenerov v oblasti gidrotekhnicheskogo stroitelstva [On Formation of Graphics Culture in Future Engineers in the Field of Hydrotechnical Construction]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 1, pp. 57-66. DOI: 10.12737/ article 5ad07ccbdad527.74719640 (in Russian)

13. Ertskina E.B., Korolkova N.N. Geometricheskoye modelirovaniye v avtomatizirovannom proyektirovanii arkhitekturnykh obyektov [Geometric Modeling in the Automated Designing of Architectural Objects]. Geometriya i grafika [Geometry and graphics]. 2016, V. 4, I. 2, pp. 48-54. DOI:https://doi.org/10.12737/19833 (in Russian)

14. Zhmud' L.Ya. Nauka, filosofiya i religiya v rannem pifagoreizme [Science, philosophy and religion of early Pythagoreanism]. St.-Petersburg, VGK-Aleteiya Publ., 1994, p. 209. (in Russian)

15. Ignatyev S.A., Moroz O.N., Tretiakova Z.O., Folomkin A.I. Opyt razrabotki elektronnykh sredstv obucheniya dlya prepodavateley geometricheskikh distsiplin [Experience n development of E-Learning tools for teaching of geometry and graphic disciplines]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 2, pp. 84-92. DOI: 10.12737/ article 5953f362d92c46/58282826 (in Russian)

16. Kraineva L.B. Metodika provedeniya spetskursa po geometrii dlya starsheklassnikov v usloviyakh lichnostno-orientirovannogo obucheniya. Kand. Diss [Method of Holding a Special Geometry Course for Senior School Pupils in the Context of Student-centered Education. Cand. Diss]. Moscow, 2007. 260 p. (in Russian)

17. Kokster G.S.M. Vvedeniye v geometriyu [Geometry Introduction]. Moscow, Nauka Publ., 1966. 648 p. (in Russian)

18. Kol'man E. Istoriya matematiki v drevnosti [Ancient History of Mathematics]. Moscow, Gosudarstvennoe izdatel'stvo fiziko-matematicheskoi literatury Publ., 1961. 235 p. (in Russian)

19. Koroev Yu.I. Nachertatel'naya geometriya [Descriptive geometry]. Moscow, KnoRus Publ., 2015, 422 p. (in Russian)

20. Livio M. φ - Chislo Boga. Zolotoe sechenie - formula mirozdaniya [The Number of God. Golden Section as a Formula of the Universe]. Moscow, ATS Publ., 2015, 218 p. (in Russian)

21. Martynenko G.Ya. Matematika Garmonii: Vozrozhdenie (XIV-XVI vv.) (k 500-letiyu knigi Luki Pacholi O bozhestvennoi proportsii) [The Mathematics of Harmony: Renaissance (14th-16th Centuries) (To the 500th Anniversary of Luca Pacioli’s Divine Proportion)]. Akademiya trinitarizma [Academy of Trinitarianism]. (in Russian)

22. Nauka. Velichaishie teorii: Trekhmernyi mir. Evklid. Geometriya [Science. Greatest Theories: Three-dimensional World. Euclid. Geometry]. Moscow, De Agostini Publ., 2015, I. 4, p. 19. Available at: https://coollib.com/b/337501/read (accessed 10 April 2019). (in Russian)

23. Perepelkin D.I. Ob odnom postroenii pravil'nogo ikosaedra i pravil'nogo dodekaedra. [On the construction of a regular icosahedron and a regular dodecahedron]. Sbornik statei po elementarnoi i nachalam vysshei matematiki. Matem. prosv. [Collection of articles on elementary and beginnings of higher mathematics. Mathematical Enlightenment]. 1937, I. 12, pp. 10-15. (in Russian)

24. Perepelkin D.I. Kurs elementarnoi geometrii [The course of elementary geometry]. Moscow-Leningrad, 1949, V. 2, pp. 283-287. (in Russian)

25. Romanova V.A. Vizualizatsiya pravilnykh mnogogrannikov v protsesse ikh obrazovaniya [Visualization of Regular Polyhedrons during Their Formation]. Geometriya i grafika [Geometry and graphics]. 2019, V. 7, I. 1, pp. 55-67. DOI:https://doi.org/10.12737/article 5c91ffd0916d52/90296375 (in Russian)

26. Safiulina Yu.G., Shmurnov V.K. Chislennyye priblizheniya “Zolotogo secheniya” s tochki zreniya grafiki i applikatsii [Golden Section’s Numerical Approximations in Terms of Graphics and Application]. Geometriya i grafika [Geometry and graphics]. 2014, V. 2, I. 2, pp. 15-20. DOI:https://doi.org/10.12737/5585 (in Russian)

27. Smirnova I.M. Kaskady iz pravil'nykh mnogogrannikov [Regular Polygons Cascades]. Available at: http://www.vasmirnov.ru/Lecture/Kaskady/Kaskady.htm (accessed 10 March 2019). (in Russian)

28. Stakhov A.P. Matematika garmonii: Innovatsii v informatsionnykh tekhnologiyakh, v osnovaniyakh matematiki, v obrazovanii [The Mathematics of Harmony: Innovations in Information Technologies, in Foundations of Mathematics, in Education]. Internet-zhurnal Naukovedenie [Naukovedenie Internet Journal]. Moscow, IGUPIT Publ., 2012, I. 4, p. 98. (in Russian)

29. Usataya T.V., Deryabina L.V., Reshetnikova E.S. Sovremennyye podkhody k proyektirovaniyu izdeliy v protsesse obucheniya studentov kompyuternoy grafike [Modern Approaches to Products Design in the Process of Students Teaching in Computer Graphics]. Geometriya i grafika [Geometry and graphics]. 2019, V. 7, I. 1, pp. 74-82. DOI: 10.12737/ article 5c91fd2bde0ff7/07282102 (in Russian)

30. Fedorov E.S. Simmetriya pravilnykh sistem figur [Symmetry of regular shape systems]. Sankt-Peterburg, A. Yakobsona Publ., 1890. 148 p. (in Russian)

31. Fedoseeva M.A. Metodika podgotovki studentov tekhnicheskikh vuzov graficheskim distsiplinam [Training Procedure in Graphic Disciplines for Students of Technical High Educational Institutions]. Geometriya i grafika [Geometry and graphics]. 2019, V. 7, I. 1, pp. 68-73. DOIhttps://doi.org/10.12737/article_5c91fed8650bb7.79232969 (in Russian)

32. Shal' M. Istoricheskii obzor proiskhozhdeniya i razvitiya geometricheskikh metodov [Historical Review of the Origin and Development of Geometrical Methods]. Moscow, 1883. 748 p. (in Russian)

33. Shchetnikov A. I. Luka Pacholi i ego traktat “O bozhestvennoj proporcii” [Luca Pacioli and his Treatise “On Divine Proportion”]. Matematicheskoe obrazovanie [Matematicheskoe obrazovanie (Mathematical Education)]. 2007, I. 1 (41), pp. 33-44. (in Russian)

34. Divina proportione: opera a tutti glingegni... : Internet Archive. Available at: https://archive.org/details/divinaproportion00paci/page/n41 (accessed 10 March 2019).

35. Vasileva V.N. Application of Computer Technologies in Building Design by Example of Original Objects of Increased Complexity. IOP Conference Series: Materials Science and Engineering, vol. 262, 2017. - DOIhttps://doi.org/10.1088/1757-899X/262/1/012106

36. Kheifets A.L., Loginovskii A.N., Butorina I.V., Vasil'eva V.N. Inzhenernaya 3D-komp'yuternaya grafika: uchebnik i praktikum dlya akademicheskogo bakalavriata [Engineering 3D Computer Graphics: Study Guide and Practicum for Academic Bachelor’s Program]. Moscow, Yurait Publ., 2015. 602 p. (in Russian)

Login or Create
* Forgot password?